view libinterp/corefcn/stack-frame.cc @ 31605:e88a07dec498 stable

maint: Use macros to begin/end C++ namespaces. * oct-conf-post-public.in.h: Define two macros (OCTAVE_BEGIN_NAMESPACE, OCTAVE_END_NAMESPACE) that can be used to start/end a namespace. * mk-opts.pl, build-env.h, build-env.in.cc, __betainc__.cc, __contourc__.cc, __dsearchn__.cc, __eigs__.cc, __expint__.cc, __ftp__.cc, __gammainc__.cc, __ichol__.cc, __ilu__.cc, __isprimelarge__.cc, __lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, amd.cc, auto-shlib.cc, auto-shlib.h, balance.cc, base-text-renderer.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, ccolamd.cc, cellfun.cc, chol.cc, colamd.cc, colloc.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, data.h, debug.cc, defaults.cc, defaults.h, defun-int.h, defun.cc, det.cc, dirfns.cc, display.cc, display.h, dlmread.cc, dmperm.cc, dot.cc, dynamic-ld.cc, dynamic-ld.h, eig.cc, ellipj.cc, environment.cc, environment.h, error.cc, error.h, errwarn.h, event-manager.cc, event-manager.h, event-queue.cc, event-queue.h, fcn-info.cc, fcn-info.h, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics-toolkit.cc, graphics-toolkit.h, graphics.cc, graphics.in.h, gsvd.cc, gtk-manager.cc, gtk-manager.h, hash.cc, help.cc, help.h, hess.cc, hex2num.cc, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter-private.cc, interpreter-private.h, interpreter.cc, interpreter.h, inv.cc, jsondecode.cc, jsonencode.cc, kron.cc, latex-text-renderer.cc, latex-text-renderer.h, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-ascii-helper.cc, ls-ascii-helper.h, ls-oct-text.cc, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mex-private.h, mex.cc, mgorth.cc, nproc.cc, oct-fstrm.cc, oct-fstrm.h, oct-hdf5-types.cc, oct-hdf5-types.h, oct-hist.cc, oct-hist.h, oct-iostrm.cc, oct-iostrm.h, oct-opengl.h, oct-prcstrm.cc, oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-process.cc, oct-process.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct-tex-lexer.in.ll, oct-tex-parser.yy, ordqz.cc, ordschur.cc, pager.cc, pager.h, pinv.cc, pow2.cc, pr-flt-fmt.cc, pr-output.cc, procstream.cc, procstream.h, psi.cc, qr.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, settings.cc, settings.h, sighandlers.cc, sighandlers.h, sparse-xdiv.cc, sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, sparse.cc, spparms.cc, sqrtm.cc, stack-frame.cc, stack-frame.h, stream-euler.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symbfact.cc, syminfo.cc, syminfo.h, symrcm.cc, symrec.cc, symrec.h, symscope.cc, symscope.h, symtab.cc, symtab.h, syscalls.cc, sysdep.cc, sysdep.h, text-engine.cc, text-engine.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, url-handle-manager.cc, url-handle-manager.h, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, xdiv.cc, xdiv.h, xnorm.cc, xnorm.h, xpow.cc, xpow.h, __delaunayn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __ode15__.cc, __voronoi__.cc, audiodevinfo.cc, audioread.cc, convhulln.cc, fftw.cc, gzip.cc, mk-build-env-features.sh, mk-builtins.pl, cdef-class.cc, cdef-class.h, cdef-fwd.h, cdef-manager.cc, cdef-manager.h, cdef-method.cc, cdef-method.h, cdef-object.cc, cdef-object.h, cdef-package.cc, cdef-package.h, cdef-property.cc, cdef-property.h, cdef-utils.cc, cdef-utils.h, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-builtin.h, ov-cell.cc, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn.h, ov-java.cc, ov-java.h, ov-mex-fcn.h, ov-null-mat.cc, ov-oncleanup.cc, ov-struct.cc, ov-typeinfo.cc, ov-typeinfo.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, octave.cc, octave.h, mk-ops.sh, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-mi.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, anon-fcn-validator.cc, anon-fcn-validator.h, bp-table.cc, bp-table.h, comment-list.cc, comment-list.h, filepos.h, lex.h, lex.ll, oct-lvalue.cc, oct-lvalue.h, oct-parse.yy, parse.h, profiler.cc, profiler.h, pt-anon-scopes.cc, pt-anon-scopes.h, pt-arg-list.cc, pt-arg-list.h, pt-args-block.cc, pt-args-block.h, pt-array-list.cc, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-spmd.cc, pt-spmd.h, pt-stmt.cc, pt-stmt.h, pt-tm-const.cc, pt-tm-const.h, pt-unop.cc, pt-unop.h, pt-vm-eval.cc, pt-walk.cc, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Range.cc, Range.h, idx-vector.cc, idx-vector.h, range-fwd.h, CollocWt.cc, CollocWt.h, aepbalance.cc, aepbalance.h, chol.cc, chol.h, gepbalance.cc, gepbalance.h, gsvd.cc, gsvd.h, hess.cc, hess.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, lu.cc, lu.h, oct-convn.cc, oct-convn.h, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-norm.h, oct-rand.cc, oct-rand.h, oct-spparms.cc, oct-spparms.h, qr.cc, qr.h, qrp.cc, qrp.h, randgamma.cc, randgamma.h, randmtzig.cc, randmtzig.h, randpoisson.cc, randpoisson.h, schur.cc, schur.h, sparse-chol.cc, sparse-chol.h, sparse-lu.cc, sparse-lu.h, sparse-qr.cc, sparse-qr.h, svd.cc, svd.h, child-list.cc, child-list.h, dir-ops.cc, dir-ops.h, file-ops.cc, file-ops.h, file-stat.cc, file-stat.h, lo-sysdep.cc, lo-sysdep.h, lo-sysinfo.cc, lo-sysinfo.h, mach-info.cc, mach-info.h, oct-env.cc, oct-env.h, oct-group.cc, oct-group.h, oct-password.cc, oct-password.h, oct-syscalls.cc, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.cc, oct-uname.h, action-container.cc, action-container.h, base-list.h, cmd-edit.cc, cmd-edit.h, cmd-hist.cc, cmd-hist.h, f77-fcn.h, file-info.cc, file-info.h, lo-array-errwarn.cc, lo-array-errwarn.h, lo-hash.cc, lo-hash.h, lo-ieee.h, lo-regexp.cc, lo-regexp.h, lo-utils.cc, lo-utils.h, oct-base64.cc, oct-base64.h, oct-glob.cc, oct-glob.h, oct-inttypes.h, oct-mutex.cc, oct-mutex.h, oct-refcount.h, oct-shlib.cc, oct-shlib.h, oct-sparse.cc, oct-sparse.h, oct-string.h, octave-preserve-stream-state.h, pathsearch.cc, pathsearch.h, quit.cc, quit.h, unwind-prot.cc, unwind-prot.h, url-transfer.cc, url-transfer.h : Use new macros to begin/end C++ namespaces.
author Rik <rik@octave.org>
date Thu, 01 Dec 2022 14:23:45 -0800
parents 08b08b7f05b2
children aac27ad79be6
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1995-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-regexp.h"
#include "str-vec.h"

#include "defun.h"
#include "error.h"
#include "interpreter.h"
#include "interpreter-private.h"
#include "oct-map.h"
#include "ov.h"
#include "ov-fcn.h"
#include "ov-fcn-handle.h"
#include "ov-usr-fcn.h"
#include "pager.h"
#include "parse.h"
#include "pt-eval.h"
#include "stack-frame.h"
#include "syminfo.h"
#include "symrec.h"
#include "symscope.h"
#include "variables.h"

OCTAVE_BEGIN_NAMESPACE(octave)

  class compiled_fcn_stack_frame : public stack_frame
  {
  public:

    compiled_fcn_stack_frame (void) = delete;

    compiled_fcn_stack_frame (tree_evaluator& tw, octave_function *fcn,
                              std::size_t index,
                              const std::shared_ptr<stack_frame>& parent_link,
                              const std::shared_ptr<stack_frame>& static_link)
      : stack_frame (tw, index, parent_link, static_link,
                     static_link->access_link ()),
        m_fcn (fcn)
    { }

    compiled_fcn_stack_frame (const compiled_fcn_stack_frame& elt) = default;

    compiled_fcn_stack_frame&
    operator = (const compiled_fcn_stack_frame& elt) = delete;

    ~compiled_fcn_stack_frame (void) = default;

    bool is_compiled_fcn_frame (void) const { return true; }

    symbol_scope get_scope (void) const
    {
      return m_static_link->get_scope ();
    }

    octave_function * function (void) const { return m_fcn; }

    symbol_record lookup_symbol (const std::string& name) const
    {
      return m_static_link->lookup_symbol (name);
    }

    symbol_record insert_symbol (const std::string& name)
    {
      return m_static_link->insert_symbol (name);
    }

    stack_frame::scope_flags scope_flag (const symbol_record& sym) const
    {
      // Look in closest stack frame that contains values (either the
      // top scope, or a user-defined function or script).

      return m_static_link->scope_flag (sym);
    }

    void set_auto_fcn_var (auto_var_type avt, const octave_value& val)
    {
      m_static_link->set_auto_fcn_var (avt, val);
    }

    octave_value get_auto_fcn_var (auto_var_type avt) const
    {
      return m_static_link->get_auto_fcn_var (avt);
    }

    // We only need to override one of each of these functions.  The
    // using declaration will avoid warnings about partially-overloaded
    // virtual functions.
    using stack_frame::varval;
    using stack_frame::varref;

    octave_value varval (const symbol_record& sym) const
    {
      // Look in closest stack frame that contains values (either the
      // top scope, or a user-defined function or script).

      return m_static_link->varval (sym);
    }

    octave_value& varref (const symbol_record& sym)
    {
      // Look in closest stack frame that contains values (either the
      // top scope, or a user-defined function or script).

      return m_static_link->varref (sym);
    }

    void mark_scope (const symbol_record& sym, scope_flags flag)
    {
      // Look in closest stack frame that contains values (either the
      // top scope, or a user-defined function or script).

      m_static_link->mark_scope (sym, flag);
    }

    void display (bool follow = true) const;

    void accept (stack_frame_walker& sfw);

  private:

    // Compiled function object associated with this stack frame.
    // Should always be a built-in, .oct or .mex file function and
    // should always be valid.
    octave_function *m_fcn;
  };

  // Scripts have a symbol_scope object to store the set of variables
  // in the script, but values for those variables are stored in the
  // stack frame corresponding to the nearest calling function or in
  // the top-level scope (the evaluation stack frame).
  //
  // Accessing values in a scope requires a mapping from the index of
  // the variable for the script scope to the list of values in the
  // evaluation frame(s).  The frame offset tells us how many access
  // links we must follow to find the stack frame that holds the
  // value.  The value offset is the index into the vector of values
  // in that stack frame that we should use to find the value.
  //
  // Frame and value offsets are set in this stack frame when it is
  // created using information from the script and enclosing scopes.
  //
  // If a script is invoked in a nested function context, the frame
  // offsets for individual values may be different.  Some may be
  // accessed from the invoking function and some may come from a
  // parent function.

  class script_stack_frame : public stack_frame
  {
  public:

    script_stack_frame (void) = delete;

    script_stack_frame (tree_evaluator& tw, octave_user_script *script,
                        std::size_t index,
                        const std::shared_ptr<stack_frame>& parent_link,
                        const std::shared_ptr<stack_frame>& static_link);

    script_stack_frame (const script_stack_frame& elt) = default;

    script_stack_frame& operator = (const script_stack_frame& elt) = delete;

    ~script_stack_frame (void)
    {
      delete m_unwind_protect_frame;
    }

    bool is_user_script_frame (void) const { return true; }

    static std::shared_ptr<stack_frame>
    get_access_link (const std::shared_ptr<stack_frame>& static_link);

    static std::size_t get_num_symbols (octave_user_script *script);

    void set_script_offsets (void);

    void set_script_offsets_internal (const std::map<std::string,
                                      symbol_record>& symbols);

    void resize_and_update_script_offsets (const symbol_record& sym);

    symbol_scope get_scope (void) const { return m_script->scope (); }

    octave_function * function (void) const { return m_script; }

    unwind_protect * unwind_protect_frame (void);

    symbol_record lookup_symbol (const std::string& name) const;

    symbol_record insert_symbol (const std::string&);

    std::size_t size (void) const { return m_lexical_frame_offsets.size (); }

    void resize (std::size_t size)
    {
      m_lexical_frame_offsets.resize (size, 0);
      m_value_offsets.resize (size, 0);
    }

    void get_val_offsets_with_insert (const symbol_record& sym,
                                      std::size_t& frame_offset,
                                      std::size_t& data_offset);

    bool get_val_offsets_internal (const symbol_record& sym,
                                   std::size_t& frame_offset,
                                   std::size_t& data_offset) const;

    bool get_val_offsets (const symbol_record& sym, std::size_t& frame_offset,
                          std::size_t& data_offset) const;

    scope_flags scope_flag (const symbol_record& sym) const;

    void set_auto_fcn_var (auto_var_type avt, const octave_value& val)
    {
      m_access_link->set_auto_fcn_var (avt, val);
    }

    octave_value get_auto_fcn_var (auto_var_type avt) const
    {
      return m_access_link->get_auto_fcn_var (avt);
    }

    // We only need to override one of each of these functions.  The
    // using declaration will avoid warnings about partially-overloaded
    // virtual functions.
    using stack_frame::varval;
    using stack_frame::varref;

    octave_value varval (const symbol_record& sym) const;

    octave_value& varref (const symbol_record& sym);

    void mark_scope (const symbol_record& sym, scope_flags flag);

    void display (bool follow = true) const;

    void accept (stack_frame_walker& sfw);

  private:

    // Script object associated with this stack frame.  Should always
    // be valid.
    octave_user_script *m_script;

    // The nearest unwind protect frame that was active when this
    // stack frame was created.  Should always be valid.
    unwind_protect *m_unwind_protect_frame;

    // Mapping between the symbols in the symbol_scope object of the
    // script to the stack frame in which the script is executed.  The
    // frame offsets may be greater than one if the script is executed
    // in a nested function context.

    std::vector<std::size_t> m_lexical_frame_offsets;
    std::vector<std::size_t> m_value_offsets;
  };

  // Base class for values and offsets shared by user_fcn and scope
  // frames.

  class base_value_stack_frame : public stack_frame
  {
  public:

    base_value_stack_frame (void) = delete;

    base_value_stack_frame (tree_evaluator& tw, std::size_t num_symbols,
                            std::size_t index,
                            const std::shared_ptr<stack_frame>& parent_link,
                            const std::shared_ptr<stack_frame>& static_link,
                            const std::shared_ptr<stack_frame>& access_link)
      : stack_frame (tw, index, parent_link, static_link, access_link),
        m_values (num_symbols, octave_value ()),
        m_flags (num_symbols, LOCAL),
        m_auto_vars (NUM_AUTO_VARS, octave_value ())
    { }

    base_value_stack_frame (const base_value_stack_frame& elt) = default;

    base_value_stack_frame&
    operator = (const base_value_stack_frame& elt) = delete;

    ~base_value_stack_frame (void) = default;

    std::size_t size (void) const
    {
      return m_values.size ();
    }

    void resize (std::size_t size)
    {
      m_values.resize (size, octave_value ());
      m_flags.resize (size, LOCAL);
    }

    stack_frame::scope_flags get_scope_flag (std::size_t data_offset) const
    {
      return m_flags.at (data_offset);
    }

    void set_scope_flag (std::size_t data_offset, scope_flags flag)
    {
      m_flags.at (data_offset) = flag;
    }

    octave_value get_auto_fcn_var (auto_var_type avt) const
    {
      return m_auto_vars.at (avt);
    }

    void set_auto_fcn_var (auto_var_type avt, const octave_value& val)
    {
      m_auto_vars.at (avt) = val;
    }

    // We only need to override one of each of these functions.  The
    // using declaration will avoid warnings about partially-overloaded
    // virtual functions.
    using stack_frame::varval;
    using stack_frame::varref;

    octave_value varval (std::size_t data_offset) const
    {
      return m_values.at (data_offset);
    }

    octave_value& varref (std::size_t data_offset)
    {
      return m_values.at (data_offset);
    }

    void display (bool follow = true) const;

  protected:

    // Variable values.  This array is indexed by the data_offset
    // value stored in the symbol_record objects of the scope
    // associated with this stack frame.
    std::vector<octave_value> m_values;

    // The type of each variable (local, global, persistent) of each
    // value.  This array is indexed by the data_offset value stored
    // in the symbol_record objects of the scope associated with this
    // stack frame.  Local values are found in the M_VALUES array.
    // Global values are stored in the tree_evaluator object that contains
    // the stack frame.  Persistent values are stored in the function
    // scope corresponding to the stack frame.
    std::vector<scope_flags> m_flags;

    // A fixed list of Automatic variables created for this function.
    // The elements of this vector correspond to the auto_var_type
    // enum.
    std::vector<octave_value> m_auto_vars;
  };

  // User-defined functions have a symbol_scope object to store the set
  // of variables in the function and values are stored in the stack
  // frame corresponding to the invocation of the function or one of
  // its parents.  The frame offset tells us how many access links we
  // must follow to find the stack frame that holds the value.  The
  // value offset is the index into the vector of values in that stack
  // frame that we should use to find the value.
  //
  // Frame and value offsets are determined when the corresponding
  // function is parsed.

  class user_fcn_stack_frame : public base_value_stack_frame
  {
  public:

    user_fcn_stack_frame (void) = delete;

    user_fcn_stack_frame (tree_evaluator& tw, octave_user_function *fcn,
                          std::size_t index,
                          const std::shared_ptr<stack_frame>& parent_link,
                          const std::shared_ptr<stack_frame>& static_link,
                          const std::shared_ptr<stack_frame>& access_link = std::shared_ptr<stack_frame> ())
      : base_value_stack_frame (tw, get_num_symbols (fcn), index,
                                parent_link, static_link,
                                (access_link
                                 ? access_link
                                 : get_access_link (fcn, static_link))),
        m_fcn (fcn), m_unwind_protect_frame (nullptr)
    { }

    user_fcn_stack_frame (tree_evaluator& tw, octave_user_function *fcn,
                          std::size_t index,
                          const std::shared_ptr<stack_frame>& parent_link,
                          const std::shared_ptr<stack_frame>& static_link,
                          const local_vars_map& local_vars,
                          const std::shared_ptr<stack_frame>& access_link = std::shared_ptr<stack_frame> ())
      : base_value_stack_frame (tw, get_num_symbols (fcn), index,
                                parent_link, static_link,
                                (access_link
                                 ? access_link
                                 : get_access_link (fcn, static_link))),
        m_fcn (fcn), m_unwind_protect_frame (nullptr)
    {
      // Initialize local variable values.

      for (const auto& nm_ov : local_vars)
        assign (nm_ov.first, nm_ov.second);
    }

    user_fcn_stack_frame (const user_fcn_stack_frame& elt) = default;

    user_fcn_stack_frame&
    operator = (const user_fcn_stack_frame& elt) = delete;

    ~user_fcn_stack_frame (void)
    {
      delete m_unwind_protect_frame;
    }

    bool is_user_fcn_frame (void) const { return true; }

    static std::shared_ptr<stack_frame>
    get_access_link (octave_user_function *fcn,
                     const std::shared_ptr<stack_frame>& static_link);

    static std::size_t get_num_symbols (octave_user_function *fcn)
    {
      symbol_scope fcn_scope = fcn->scope ();

      return fcn_scope.num_symbols ();
    }

    void clear_values (void);

    symbol_scope get_scope (void) const { return m_fcn->scope (); }

    octave_function * function (void) const { return m_fcn; }

    unwind_protect * unwind_protect_frame (void);

    symbol_record lookup_symbol (const std::string& name) const;

    symbol_record insert_symbol (const std::string&);

    scope_flags scope_flag (const symbol_record& sym) const;

    // We only need to override one of each of these functions.  The
    // using declaration will avoid warnings about partially-overloaded
    // virtual functions.
    using base_value_stack_frame::varval;
    using base_value_stack_frame::varref;

    octave_value varval (const symbol_record& sym) const;

    octave_value& varref (const symbol_record& sym);

    void mark_scope (const symbol_record& sym, scope_flags flag);

    void display (bool follow = true) const;

    void accept (stack_frame_walker& sfw);

    void break_closure_cycles (const std::shared_ptr<stack_frame>& frame);

  private:

    // User-defined object associated with this stack frame.  Should
    // always be valid.
    octave_user_function *m_fcn;

    // The nearest unwind protect frame that was active when this
    // stack frame was created.  Should always be valid.
    unwind_protect *m_unwind_protect_frame;
  };

  // Pure scope stack frames (primarily the top-level workspace) have
  // a set of variables and values are stored in the stack frame.  All
  // variable accesses are direct as there are no parent stack frames.
  //
  // Value offsets are determined when the corresponding variable is
  // entered into the symbol_scope object corresponding to the frame.

  class scope_stack_frame : public base_value_stack_frame
  {
  public:

    scope_stack_frame (void) = delete;

    scope_stack_frame (tree_evaluator& tw, const symbol_scope& scope,
                       std::size_t index,
                       const std::shared_ptr<stack_frame>& parent_link,
                       const std::shared_ptr<stack_frame>& static_link)
      : base_value_stack_frame (tw, scope.num_symbols (), index,
                                parent_link, static_link, nullptr),
        m_scope (scope)
    { }

    scope_stack_frame (const scope_stack_frame& elt) = default;

    scope_stack_frame& operator = (const scope_stack_frame& elt) = delete;

    ~scope_stack_frame (void) = default;

    bool is_scope_frame (void) const { return true; }

    symbol_scope get_scope (void) const { return m_scope; }

    symbol_record lookup_symbol (const std::string& name) const
    {
      return m_scope.lookup_symbol (name);
    }

    symbol_record insert_symbol (const std::string&);

    scope_flags scope_flag (const symbol_record& sym) const;

    // We only need to override one of each of these functions.  The
    // using declaration will avoid warnings about partially-overloaded
    // virtual functions.
    using base_value_stack_frame::varval;
    using base_value_stack_frame::varref;

    octave_value varval (const symbol_record& sym) const;

    octave_value& varref (const symbol_record& sym);

    void mark_scope (const symbol_record& sym, scope_flags flag);

    void display (bool follow = true) const;

    void accept (stack_frame_walker& sfw);

  private:

    // The scope object associated with this stack frame.
    symbol_scope m_scope;
  };

  // FIXME: There should probably be a display method for the script,
  // fcn, and scope objects and the script and function objects should
  // be responsible for displaying the scopes they contain.

  static void display_scope (std::ostream& os, const symbol_scope& scope)
  {
    if (scope)
      {
        os << "scope: " << scope.name () << std::endl;

        if (scope.num_symbols () > 0)
          {
            os << "name (frame offset, data offset, storage class):"
               << std::endl;

            std::list<symbol_record> symbols = scope.symbol_list ();

            for (auto& sym : symbols)
              {
                os << "  " << sym.name () << " (" << sym.frame_offset ()
                   << ", " << sym.data_offset () << ", " << sym.storage_class ()
                   << ")" << std::endl;
              }
          }
      }
  }

  class stack_frame_walker
  {
  protected:

    stack_frame_walker (void) { }

    virtual ~stack_frame_walker (void) = default;

  public:

    // No copying!

    stack_frame_walker (const stack_frame_walker&) = delete;

    stack_frame_walker& operator = (const stack_frame_walker&) = delete;

    virtual void
    visit_compiled_fcn_stack_frame (compiled_fcn_stack_frame&) = 0;

    virtual void
    visit_script_stack_frame (script_stack_frame&) = 0;

    virtual void
    visit_user_fcn_stack_frame (user_fcn_stack_frame&) = 0;

    virtual void
    visit_scope_stack_frame (scope_stack_frame&) = 0;
  };

  class symbol_cleaner : public stack_frame_walker
  {
  public:

    symbol_cleaner (const std::string& pattern, bool have_regexp = false)
      : stack_frame_walker (), m_patterns (pattern),
        m_clear_all_names (false), m_clear_objects (false),
        m_have_regexp (have_regexp), m_cleared_names ()
    { }

    symbol_cleaner (const string_vector& patterns, bool have_regexp = false)
      : stack_frame_walker (), m_patterns (patterns),
        m_clear_all_names (false), m_clear_objects (false),
        m_have_regexp (have_regexp), m_cleared_names ()
    { }

    symbol_cleaner (bool clear_all_names = true, bool clear_objects = false)
      : stack_frame_walker (), m_patterns (),
        m_clear_all_names (clear_all_names), m_clear_objects (clear_objects),
        m_have_regexp (false), m_cleared_names ()
    { }

    symbol_cleaner (const symbol_cleaner&) = delete;

    symbol_cleaner& operator = (const symbol_cleaner&) = delete;

    ~symbol_cleaner (void) = default;

    void visit_compiled_fcn_stack_frame (compiled_fcn_stack_frame& frame)
    {
      // This one follows static link always.  Hmm, should the access
      // link for a compiled_fcn_stack_frame be the same as the static
      // link?

      std::shared_ptr<stack_frame> slink = frame.static_link ();

      if (slink)
        slink->accept (*this);
    }

    void visit_script_stack_frame (script_stack_frame& frame)
    {
      std::shared_ptr<stack_frame> alink = frame.access_link ();

      if (alink)
        alink->accept (*this);
    }

    void visit_user_fcn_stack_frame (user_fcn_stack_frame& frame)
    {
      clean_frame (frame);

      std::shared_ptr<stack_frame> alink = frame.access_link ();

      if (alink)
        alink->accept (*this);
    }

    void visit_scope_stack_frame (scope_stack_frame& frame)
    {
      clean_frame (frame);

      std::shared_ptr<stack_frame> alink = frame.access_link ();

      if (alink)
        alink->accept (*this);
    }

  private:

    void maybe_clear_symbol (stack_frame& frame, const symbol_record& sym)
    {
      std::string name = sym.name ();

      if (m_cleared_names.find (name) == m_cleared_names.end ())
        {
          // FIXME: Should we check that the name is defined and skip if
          // it is not?  Is it possible for another symbol with the same
          // name to appear in a later stack frame?

          // FIXME: If we are clearing objects and a symbol is found,
          // should we add it to the list of cleared names (since
          // we did find a symbol) but skip clearing the object?

          if (m_clear_objects && ! frame.is_object (sym))
            return;

          m_cleared_names.insert (name);

          frame.clear (sym);
        }
    }

    // FIXME: It would be nice to avoid the duplication in the following
    // function.

    void clear_symbols (stack_frame& frame,
                        const std::list<symbol_record>& symbols)
    {
      if (m_clear_all_names)
        {
          for (const auto& sym : symbols)
            maybe_clear_symbol (frame, sym);
        }
      else if (m_have_regexp)
        {
          octave_idx_type npatterns = m_patterns.numel ();

          for (octave_idx_type j = 0; j < npatterns; j++)
            {
              std::string pattern = m_patterns[j];

              regexp pat (pattern);

              for (const auto& sym : symbols)
                {
                  if (pat.is_match (sym.name ()))
                    maybe_clear_symbol (frame, sym);
                }
            }
        }
      else
        {
          octave_idx_type npatterns = m_patterns.numel ();

          for (octave_idx_type j = 0; j < npatterns; j++)
            {
              std::string pattern = m_patterns[j];

              glob_match pat (pattern);

              for (const auto& sym : symbols)
                {
                  if (pat.match (sym.name ()))
                    maybe_clear_symbol (frame, sym);
                }
            }
        }
    }

    void clean_frame (stack_frame& frame)
    {
      symbol_scope scope = frame.get_scope ();

      std::list<symbol_record> symbols = scope.symbol_list ();

      if (m_clear_all_names || ! m_patterns.empty ())
        clear_symbols (frame, symbols);
    }

    string_vector m_patterns;

    bool m_clear_all_names;
    bool m_clear_objects;
    bool m_have_regexp;

    std::set<std::string> m_cleared_names;
  };

  class symbol_info_accumulator : public stack_frame_walker
  {
  public:

    symbol_info_accumulator (const std::string& pattern,
                             bool have_regexp = false)
      : stack_frame_walker (), m_patterns (pattern), m_match_all (false),
        m_first_only (false), m_have_regexp (have_regexp), m_sym_inf_list (),
        m_found_names ()
    { }

    symbol_info_accumulator (const string_vector& patterns,
                             bool have_regexp = false)
      : stack_frame_walker (), m_patterns (patterns), m_match_all (false),
        m_first_only (false), m_have_regexp (have_regexp), m_sym_inf_list (),
        m_found_names ()
    { }

    symbol_info_accumulator (bool match_all = true, bool first_only = true)
      : stack_frame_walker (), m_patterns (), m_match_all (match_all),
        m_first_only (first_only), m_have_regexp (false),
        m_sym_inf_list (), m_found_names ()
    { }

    symbol_info_accumulator (const symbol_info_accumulator&) = delete;

    symbol_info_accumulator& operator = (const symbol_info_accumulator&) = delete;

    ~symbol_info_accumulator (void) = default;

    bool is_empty  (void) const
    {
      for (const auto& nm_sil : m_sym_inf_list)
        {
          const symbol_info_list& lst = nm_sil.second;

          if (! lst.empty ())
            return false;
        }

      return true;
    }

    std::list<std::string> names (void) const
    {
      std::list<std::string> retval;

      for (const auto& nm_sil : m_sym_inf_list)
        {
          const symbol_info_list& lst = nm_sil.second;

          std::list<std::string> nm_list = lst.names ();

          for (const auto& nm : nm_list)
            retval.push_back (nm);
        }

      return retval;
    }

    symbol_info_list symbol_info (void) const
    {
      symbol_info_list retval;

      for (const auto& nm_sil : m_sym_inf_list)
        {
          const symbol_info_list& lst = nm_sil.second;

          for (const auto& syminf : lst)
            retval.push_back (syminf);
        }

      return retval;
    }

    octave_map map_value (void) const
    {
      octave_map retval;

      // FIXME: is there a better way to concatenate structures?

      std::size_t n_frames = m_sym_inf_list.size ();

      OCTAVE_LOCAL_BUFFER (octave_map, map_list, n_frames);

      std::size_t j = 0;
      for (const auto& nm_sil : m_sym_inf_list)
        {
          std::string scope_name = nm_sil.first;
          const symbol_info_list& lst = nm_sil.second;

          map_list[j] = lst.map_value (scope_name, n_frames-j);

          j++;
        }

      return octave_map::cat (-1, n_frames, map_list);
    }

    void display (std::ostream& os, const std::string& format) const
    {
      for (const auto& nm_sil : m_sym_inf_list)
        {
          os << "\nvariables in scope: " << nm_sil.first << "\n\n";

          const symbol_info_list& lst = nm_sil.second;

          lst.display (os, format);
        }
    }

    void visit_compiled_fcn_stack_frame (compiled_fcn_stack_frame& frame)
    {
      // This one follows static link always.  Hmm, should the access
      // link for a compiled_fcn_stack_frame be the same as the static
      // link?

      std::shared_ptr<stack_frame> slink = frame.static_link ();

      if (slink)
        slink->accept (*this);
    }

    void visit_script_stack_frame (script_stack_frame& frame)
    {
      std::shared_ptr<stack_frame> alink = frame.access_link ();

      if (alink)
        alink->accept (*this);
    }

    void visit_user_fcn_stack_frame (user_fcn_stack_frame& frame)
    {
      append_list (frame);

      std::shared_ptr<stack_frame> alink = frame.access_link ();

      if (alink)
        alink->accept (*this);
    }

    void visit_scope_stack_frame (scope_stack_frame& frame)
    {
      append_list (frame);

      std::shared_ptr<stack_frame> alink = frame.access_link ();

      if (alink)
        alink->accept (*this);
    }

  private:

    typedef std::pair<std::string, symbol_info_list> syminf_list_elt;

    // FIXME: the following is too complex and duplicates too much
    // code.  Maybe it should be split up so we have separate classes
    // that do each job that is needed?

    std::list<symbol_record>
    filter (stack_frame& frame, const std::list<symbol_record>& symbols)
    {
      std::list<symbol_record> new_symbols;

      if (m_match_all)
        {
          for (const auto& sym : symbols)
            {
              if (frame.is_defined (sym))
                {
                  std::string name = sym.name ();

                  if (m_first_only
                      && m_found_names.find (name) != m_found_names.end ())
                    continue;

                  m_found_names.insert (name);

                  new_symbols.push_back (sym);
                }
            }
        }
      else if (m_have_regexp)
        {
          octave_idx_type npatterns = m_patterns.numel ();

          for (octave_idx_type j = 0; j < npatterns; j++)
            {
              std::string pattern = m_patterns[j];

              regexp pat (pattern);

              for (const auto& sym : symbols)
                {
                  std::string name = sym.name ();

                  if (pat.is_match (name) && frame.is_defined (sym))
                    {
                      if (m_first_only
                          && m_found_names.find (name) != m_found_names.end ())
                        continue;

                      m_found_names.insert (name);

                      new_symbols.push_back (sym);
                    }
                }
            }
        }
      else
        {
          octave_idx_type npatterns = m_patterns.numel ();

          for (octave_idx_type j = 0; j < npatterns; j++)
            {
              std::string pattern = m_patterns[j];

              glob_match pat (pattern);

              for (const auto& sym : symbols)
                {
                  std::string name = sym.name ();

                  if (pat.match (name) && frame.is_defined (sym))
                    {
                      if (m_first_only
                          && m_found_names.find (name) == m_found_names.end ())
                        continue;

                      m_found_names.insert (name);

                      new_symbols.push_back (sym);
                    }
                }
            }
        }

      return new_symbols;
    }

    void append_list (stack_frame& frame)
    {
      symbol_scope scope = frame.get_scope ();

      std::list<symbol_record> symbols = scope.symbol_list ();

      if (m_match_all || ! m_patterns.empty ())
        symbols = filter (frame, symbols);

      symbol_info_list syminf_list = frame.make_symbol_info_list (symbols);

      m_sym_inf_list.push_back (syminf_list_elt (scope.name (), syminf_list));
    }

    string_vector m_patterns;

    bool m_match_all;
    bool m_first_only;
    bool m_have_regexp;

    std::list<std::pair<std::string, symbol_info_list>> m_sym_inf_list;

    std::set<std::string> m_found_names;
  };

  stack_frame * stack_frame::create (tree_evaluator& tw, octave_function *fcn,
                                     std::size_t index,
                                     const std::shared_ptr<stack_frame>& parent_link,
                                     const std::shared_ptr<stack_frame>& static_link)
  {
    return new compiled_fcn_stack_frame (tw, fcn, index,
                                         parent_link, static_link);
  }

  stack_frame * stack_frame::create (tree_evaluator& tw,
                                     octave_user_script *script,
                                     std::size_t index,
                                     const std::shared_ptr<stack_frame>& parent_link,
                                     const std::shared_ptr<stack_frame>& static_link)
  {
    return new script_stack_frame (tw, script, index, parent_link, static_link);
  }

  stack_frame * stack_frame::create (tree_evaluator& tw,
                                     octave_user_function *fcn, std::size_t index,
                                     const std::shared_ptr<stack_frame>& parent_link,
                                     const std::shared_ptr<stack_frame>& static_link,
                                     const std::shared_ptr<stack_frame>& access_link)
  {
    return new user_fcn_stack_frame (tw, fcn, index,
                                     parent_link, static_link, access_link);
  }

  stack_frame * stack_frame::create (tree_evaluator& tw,
                                     octave_user_function *fcn, std::size_t index,
                                     const std::shared_ptr<stack_frame>& parent_link,
                                     const std::shared_ptr<stack_frame>& static_link,
                                     const local_vars_map& local_vars,
                                     const std::shared_ptr<stack_frame>& access_link)
  {
    return new user_fcn_stack_frame (tw, fcn, index,
                                     parent_link, static_link, local_vars,
                                     access_link);
  }

  stack_frame * stack_frame::create (tree_evaluator& tw,
                                     const symbol_scope& scope, std::size_t index,
                                     const std::shared_ptr<stack_frame>& parent_link,
                                     const std::shared_ptr<stack_frame>& static_link)
  {
    return new scope_stack_frame (tw, scope, index, parent_link, static_link);
  }

  // This function is only implemented and should only be called for
  // user_fcn stack frames.  Anything else indicates an error in the
  // implementation, but we'll simply warn if that happens.

  void stack_frame::clear_values (void)
  {
    warning ("invalid call to stack_frame::clear_values; please report");
  }

  symbol_info_list
  stack_frame::make_symbol_info_list (const std::list<symbol_record>& symrec_list) const
  {
    symbol_info_list symbol_stats;

    for (const auto& sym : symrec_list)
      {
        octave_value value = varval (sym);

        if (! value.is_defined ()
            || (is_user_fcn_frame () && sym.frame_offset () > 0))
          continue;

        symbol_info syminf (sym.name (), value, sym.is_formal (),
                            is_global (sym), is_persistent (sym));

        symbol_stats.append (syminf);
      }

    return symbol_stats;
  }

  octave_value stack_frame::who (const string_vector& patterns,
                                 bool have_regexp, bool return_list,
                                 bool verbose, const std::string& whos_line_fmt,
                                 const std::string& msg)
  {
    symbol_info_accumulator sym_inf_accum (patterns, have_regexp);

    accept (sym_inf_accum);

    if (return_list)
      {
        if (verbose)
          return sym_inf_accum.map_value ();
        else
          return Cell (string_vector (sym_inf_accum.names ()));
      }
    else if (! sym_inf_accum.is_empty ())
      {

        if (msg.empty ())
          octave_stdout << "Variables visible from the current scope:\n";
        else
          octave_stdout << msg;

        if (verbose)
          sym_inf_accum.display (octave_stdout, whos_line_fmt);
        else
          {
            octave_stdout << "\n";
            string_vector names (sym_inf_accum.names ());
            names.list_in_columns (octave_stdout);
          }

        octave_stdout << "\n";
      }

    return octave_value ();
  }

  // Return first occurrence of variables in current stack frame and any
  // parent frames reachable through access links.

  symbol_info_list stack_frame::all_variables (void)
  {
    symbol_info_accumulator sia (true, true);

    accept (sia);

    return sia.symbol_info ();
  }

  octave_value stack_frame::workspace (void)
  {
    std::list<octave_scalar_map> ws_list;

    stack_frame *frame = this;

    while (frame)
      {
        symbol_info_list symbols = frame->all_variables ();

        octave_scalar_map ws;

        for (const auto& sym_name : symbols.names ())
          {
            octave_value val = symbols.varval (sym_name);

            if (val.is_defined ())
              ws.assign (sym_name, val);
          }

        ws_list.push_back (ws);

        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    Cell ws_frames (ws_list.size (), 1);

    octave_idx_type i = 0;
    for (const auto& elt : ws_list)
      ws_frames(i++) = elt;

    return ws_frames;
  }

  // FIXME: Should this function also find any variables in parent
  // scopes accessible through access_links?

  std::list<std::string> stack_frame::variable_names (void) const
  {
    std::list<std::string> retval;

    symbol_scope scope = get_scope ();

    const std::map<std::string, symbol_record>& symbols = scope.symbols ();

    for (const auto& nm_sr : symbols)
      {
        if (is_variable (nm_sr.second))
          retval.push_back (nm_sr.first);
      }

    retval.sort ();

    return retval;
  }

  symbol_info_list stack_frame::glob_symbol_info (const std::string& pattern)
  {
    symbol_info_accumulator sia (pattern, false);

    accept (sia);

    return sia.symbol_info ();
  }

  symbol_info_list stack_frame::regexp_symbol_info (const std::string& pattern)
  {
    symbol_info_accumulator sia (pattern, true);

    accept (sia);

    return sia.symbol_info ();
  }

  std::size_t stack_frame::size (void) const
  {
    // This function should only be called for user_fcn_stack_frame or
    // scope_stack_frame objects.  Anything else indicates an error in
    // the implementation.

    panic_impossible ();
  }

  void stack_frame::resize (std::size_t)
  {
    // This function should only be called for user_fcn_stack_frame or
    // scope_stack_frame objects.  Anything else indicates an error in
    // the implementation.

    panic_impossible ();
  }

  stack_frame::scope_flags stack_frame::get_scope_flag (std::size_t) const
  {
    // This function should only be called for user_fcn_stack_frame or
    // scope_stack_frame objects.  Anything else indicates an error in
    // the implementation.

    panic_impossible ();
  }

  void stack_frame::set_scope_flag (std::size_t, scope_flags)
  {
    // This function should only be called for user_fcn_stack_frame or
    // scope_stack_frame objects.  Anything else indicates an error in
    // the implementation.

    panic_impossible ();
  }

  void stack_frame::install_variable (const symbol_record& sym,
                                      const octave_value& value, bool global)
  {
    if (global && ! is_global (sym))
      {
        octave_value val = varval (sym);

        if (val.is_defined ())
          {
            std::string nm = sym.name ();

            warning_with_id ("Octave:global-local-conflict",
                             "global: '%s' is defined in the current scope.\n",
                             nm.c_str ());
            warning_with_id ("Octave:global-local-conflict",
                             "global: in a future version, global variables must be declared before use.\n");

            // If the symbol is defined in the local but not the
            // global scope, then use the local value as the
            // initial value.  This value will also override any
            // initializer in the global statement.
            octave_value global_val = m_evaluator.global_varval (nm);

            if (global_val.is_defined ())
              {
                warning_with_id ("Octave:global-local-conflict",
                                 "global: global value overrides existing local value");

                clear (sym);
              }
            else
              {
                warning_with_id ("Octave:global-local-conflict",
                                 "global: existing local value used to initialize global variable");

                m_evaluator.global_varref (nm) = val;
              }
          }

        mark_global (sym);
      }

    if (value.is_defined ())
      assign (sym, value);
  }

  octave_value stack_frame::varval (std::size_t) const
  {
    // This function should only be called for user_fcn_stack_frame or
    // scope_stack_frame objects.  Anything else indicates an error in
    // the implementation.

    panic_impossible ();
  }

  octave_value& stack_frame::varref (std::size_t)
  {
    // This function should only be called for user_fcn_stack_frame or
    // scope_stack_frame objects.  Anything else indicates an error in
    // the implementation.

    panic_impossible ();
  }

  void stack_frame::clear_objects (void)
  {
    symbol_cleaner sc (true, true);

    accept (sc);
  }

  void stack_frame::clear_variable (const std::string& name)
  {
    symbol_cleaner sc (name);

    accept (sc);
  }

  void stack_frame::clear_variable_pattern (const std::string& pattern)
  {
    symbol_cleaner sc (pattern);

    accept (sc);
  }

  void stack_frame::clear_variable_pattern (const string_vector& patterns)
  {
    symbol_cleaner sc (patterns);

    accept (sc);
  }

  void stack_frame::clear_variable_regexp (const std::string& pattern)
  {
    symbol_cleaner sc (pattern, true);

    accept (sc);
  }

  void stack_frame::clear_variable_regexp (const string_vector& patterns)
  {
    symbol_cleaner sc (patterns, true);

    accept (sc);
  }

  void stack_frame::clear_variables (void)
  {
    symbol_cleaner sc;

    accept (sc);
  }

  void stack_frame::display_stopped_in_message (std::ostream& os) const
  {
    if (index () == 0)
      os << "at top level" << std::endl;
    else
      {
        os << "stopped in " << fcn_name ();

        int l = line ();
        if (l > 0)
          os << " at line " << line ();

        os << " [" << fcn_file_name () << "] " << std::endl;
      }
  }

  void stack_frame::display (bool follow) const
  {
    std::ostream& os = octave_stdout;

    os << "-- [stack_frame] (" << this << ") --" << std::endl;

    os << "parent link: ";
    if (m_parent_link)
      os << m_parent_link.get ();
    else
      os << "NULL";
    os << std::endl;

    os << "static link: ";
    if (m_static_link)
      os << m_static_link.get ();
    else
      os << "NULL";
    os << std::endl;

    os << "access link: ";
    if (m_access_link)
      os << m_access_link.get ();
    else
      os << "NULL";
    os << std::endl;

    os << "line: " << m_line << std::endl;
    os << "column: " << m_column << std::endl;
    os << "index: " << m_index << std::endl;

    os << std::endl;

    if (! follow)
      return;

    os << "FOLLOWING ACCESS LINKS:" << std::endl;
    std::shared_ptr<stack_frame> frm = access_link ();
    while (frm)
      {
        frm->display (false);
        os << std::endl;

        frm = frm->access_link ();
      }
  }

  void compiled_fcn_stack_frame::display (bool follow) const
  {
    std::ostream& os = octave_stdout;

    os << "-- [compiled_fcn_stack_frame] (" << this << ") --" << std::endl;
    stack_frame::display (follow);

    os << "fcn: " << m_fcn->name ()
       << " (" << m_fcn->type_name () << ")" << std::endl;
  }

  void compiled_fcn_stack_frame::accept (stack_frame_walker& sfw)
  {
    sfw.visit_compiled_fcn_stack_frame (*this);
  }

  script_stack_frame::script_stack_frame (tree_evaluator& tw,
                                          octave_user_script *script,
                                          std::size_t index,
                                          const std::shared_ptr<stack_frame>& parent_link,
                                          const std::shared_ptr<stack_frame>& static_link)
    : stack_frame (tw, index, parent_link, static_link,
                   get_access_link (static_link)),
      m_script (script), m_unwind_protect_frame (nullptr),
      m_lexical_frame_offsets (get_num_symbols (script), 1),
      m_value_offsets (get_num_symbols (script), 0)
  {
    set_script_offsets ();
  }

  std::size_t script_stack_frame::get_num_symbols (octave_user_script *script)
  {
    symbol_scope script_scope = script->scope ();

    return script_scope.num_symbols ();
  }

  void script_stack_frame::set_script_offsets (void)
  {
    // Set frame and data offsets inside stack frame based on enclosing
    // scope(s).

    symbol_scope script_scope = m_script->scope ();

    std::size_t num_script_symbols = script_scope.num_symbols ();

    resize (num_script_symbols);

    const std::map<std::string, symbol_record>& script_symbols
      = script_scope.symbols ();

    set_script_offsets_internal (script_symbols);
  }

  void script_stack_frame::set_script_offsets_internal
   (const std::map<std::string, symbol_record>& script_symbols)
  {
    // This scope will be used to evaluate the script.  Find (or
    // possibly insert) symbols from the dummy script scope here.

    symbol_scope eval_scope = m_access_link->get_scope ();

    if (eval_scope.is_nested ())
      {
        bool found = false;

        for (const auto& nm_sr : script_symbols)
          {
            std::string name = nm_sr.first;
            symbol_record script_sr = nm_sr.second;

            symbol_scope parent_scope = eval_scope;

            std::size_t count = 1;

            while (parent_scope)
              {
                const std::map<std::string, symbol_record>& parent_scope_symbols
                  = parent_scope.symbols ();

                auto p = parent_scope_symbols.find (name);

                if (p != parent_scope_symbols.end ())
                  {
                    found = true;
                    symbol_record parent_scope_sr = p->second;

                    std::size_t script_sr_data_offset = script_sr.data_offset ();

                    m_lexical_frame_offsets.at (script_sr_data_offset)
                      = parent_scope_sr.frame_offset () + count;

                    m_value_offsets.at (script_sr_data_offset)
                      = parent_scope_sr.data_offset ();

                    break;
                  }
                else
                  {
                    count++;
                    parent_scope = parent_scope.parent_scope ();
                  }
              }

            if (! found)
              error ("symbol '%s' cannot be added to static scope",
                     name.c_str ());
          }
      }
    else
      {
        const std::map<std::string, symbol_record>& eval_scope_symbols
          = eval_scope.symbols ();

        for (const auto& nm_sr : script_symbols)
          {
            std::string name = nm_sr.first;
            symbol_record script_sr = nm_sr.second;

            auto p = eval_scope_symbols.find (name);

            symbol_record eval_scope_sr;

            if (p == eval_scope_symbols.end ())
              eval_scope_sr = eval_scope.insert (name);
            else
              eval_scope_sr = p->second;

            std::size_t script_sr_data_offset = script_sr.data_offset ();

            // The +1 is for going from the script frame to the eval
            // frame.  Only one access_link should need to be followed.

            m_lexical_frame_offsets.at (script_sr_data_offset)
              = eval_scope_sr.frame_offset () + 1;

            m_value_offsets.at (script_sr_data_offset)
              = eval_scope_sr.data_offset ();
          }
      }
  }

  void script_stack_frame::resize_and_update_script_offsets (const symbol_record& sym)
  {
    std::size_t data_offset = sym.data_offset ();

    // This function is called when adding new symbols to a script
    // scope.  If the symbol wasn't present before, it should be outside
    // the range so we need to resize then update offsets.

    panic_unless (data_offset >= size ());

    resize (data_offset+1);

    // FIXME: We should be able to avoid creating the map object and the
    // looping in the set_scripts_offsets_internal function.  Can we do
    // that without (or with minimal) code duplication?

    std::map<std::string, symbol_record> tmp_symbols;
    tmp_symbols[sym.name ()] = sym;
    set_script_offsets_internal (tmp_symbols);
  }

  // If this is a nested scope, set access_link to nearest parent
  // stack frame that corresponds to the lexical parent of this scope.

  std::shared_ptr<stack_frame>
  script_stack_frame::get_access_link (const std::shared_ptr<stack_frame>& static_link)
  {
    // If this script is called from another script, set access
    // link to ultimate parent stack frame.

    std::shared_ptr<stack_frame> alink = static_link;

    while (alink->is_user_script_frame ())
      {
        if (alink->access_link ())
          alink = alink->access_link ();
        else
          break;
      }

    return alink;
  }

  unwind_protect * script_stack_frame::unwind_protect_frame (void)
  {
    if (! m_unwind_protect_frame)
      m_unwind_protect_frame = new unwind_protect ();

    return m_unwind_protect_frame;
  }

  symbol_record script_stack_frame::lookup_symbol (const std::string& name) const
  {
    symbol_scope scope = get_scope ();

    symbol_record sym = scope.lookup_symbol (name);

    if (sym)
      {
        panic_unless (sym.frame_offset () == 0);

        return sym;
      }

    sym = m_access_link->lookup_symbol (name);

    // Return symbol record with adjusted frame offset.
    symbol_record new_sym = sym.dup ();

    new_sym.set_frame_offset (sym.frame_offset () + 1);

    return new_sym;
  }

  symbol_record script_stack_frame::insert_symbol (const std::string& name)
  {
    // If the symbols is already in the immediate scope, there is
    // nothing more to do.

    symbol_scope scope = get_scope ();

    symbol_record sym = scope.lookup_symbol (name);

    if (sym)
      {
        // All symbol records in a script scope should have zero offset,
        // which means we redirect our lookup using
        // lexical_frame_offsets and values_offets.
        panic_unless (sym.frame_offset () == 0);

        return sym;
      }

    // Insert the symbol in the current scope then resize and update
    // offsets.  This operation should never fail.

    sym = scope.find_symbol (name);

    panic_unless (sym.is_valid ());

    resize_and_update_script_offsets (sym);

    return sym;
  }

  // Similar to set_script_offsets_internal except that we only return
  // frame and data offsets for symbols found by name in parent scopes
  // instead of updating the offsets stored in the script frame itself.

  bool
  script_stack_frame::get_val_offsets_internal (const symbol_record& script_sr,
                                                std::size_t& frame_offset,
                                                std::size_t& data_offset) const
  {
    bool found = false;

    // This scope will be used to evaluate the script.  Find symbols
    // here by name.

    symbol_scope eval_scope = m_access_link->get_scope ();

    if (eval_scope.is_nested ())
      {
        std::string name = script_sr.name ();

        symbol_scope parent_scope = eval_scope;

        std::size_t count = 1;

        while (parent_scope)
          {
            const std::map<std::string, symbol_record>& parent_scope_symbols
              = parent_scope.symbols ();

            auto p = parent_scope_symbols.find (name);

            if (p != parent_scope_symbols.end ())
              {
                found = true;
                symbol_record parent_scope_sr = p->second;

                frame_offset = parent_scope_sr.frame_offset () + count;

                data_offset = parent_scope_sr.data_offset ();

                break;
              }
            else
              {
                count++;
                parent_scope = parent_scope.parent_scope ();
              }
          }
      }
    else
      {
        const std::map<std::string, symbol_record>& eval_scope_symbols
          = eval_scope.symbols ();

        std::string name = script_sr.name ();

        auto p = eval_scope_symbols.find (name);

        symbol_record eval_scope_sr;

        if (p != eval_scope_symbols.end ())
          {
            found = true;
            eval_scope_sr = p->second;

            // The +1 is for going from the script frame to the eval
            // frame.  Only one access_link should need to be followed.

            frame_offset = eval_scope_sr.frame_offset () + 1;

            data_offset = eval_scope_sr.data_offset ();
          }
      }

    return found;
  }

  bool script_stack_frame::get_val_offsets (const symbol_record& sym,
                                            std::size_t& frame_offset,
                                            std::size_t& data_offset) const
  {
    data_offset = sym.data_offset ();
    frame_offset = sym.frame_offset ();

    if (frame_offset == 0)
      {
        // An out of range data_offset value here means that we have a
        // symbol that was not originally in the script.  But this
        // function is called in places where we can't insert a new
        // symbol, so we fail and it is up to the caller to decide what
        // to do.

        if (data_offset >= size ())
          return get_val_offsets_internal (sym, frame_offset, data_offset);

        // Use frame and value offsets stored in this stack frame,
        // indexed by data_offset from the symbol_record to find the
        // values.  These offsets were determined by
        // script_stack_frame::set_script_offsets when this script was
        // invoked.

        frame_offset = m_lexical_frame_offsets.at (data_offset);

        if (frame_offset == 0)
          {
            // If the frame offset stored in m_lexical_frame_offsets is
            // zero, then the data offset in the evaluation scope has
            // not been determined so try to do that now.  The symbol
            // may have been added by eval and without calling
            // resize_and_update_script_offsets.

            return get_val_offsets_internal (sym, frame_offset, data_offset);
          }

        data_offset = m_value_offsets.at (data_offset);
      }
    else
      {
        // If frame_offset is not zero, then then we must have a symbol
        // that was not originally in the script.  The values should
        // have been determined by the script_stack_frame::lookup function.
      }

    return true;
  }

  void script_stack_frame::get_val_offsets_with_insert (const symbol_record& sym,
                                                        std::size_t& frame_offset,
                                                        std::size_t& data_offset)
  {
    data_offset = sym.data_offset ();
    frame_offset = sym.frame_offset ();

    if (frame_offset == 0)
      {
        if (data_offset >= size ())
          {
            // If the data_offset is out of range, then we must have a
            // symbol that was not originally in the script.  Resize and
            // update the offsets.

            resize_and_update_script_offsets (sym);
          }

        // Use frame and value offsets stored in this stack frame,
        // indexed by data_offset from the symbol_record to find the
        // values.  These offsets were determined by
        // script_stack_frame::set_script_offsets when this script was
        // invoked.

        frame_offset = m_lexical_frame_offsets.at (data_offset);

        if (frame_offset == 0)
          {
            // If the frame offset stored in m_lexical_frame_offsets is
            // zero, then the data offset in the evaluation scope has
            // not been determined so try to do that now.  The symbol
            // may have been added by eval and without calling
            // resize_and_update_script_offsets.

            // We don't need to resize here.  That case is handled above.

            // FIXME: We should be able to avoid creating the map object
            // and the looping in the set_scripts_offsets_internal
            // function.  Can we do that without (or with minimal) code
            // duplication?

            std::map<std::string, symbol_record> tmp_symbols;
            tmp_symbols[sym.name ()] = sym;
            set_script_offsets_internal (tmp_symbols);

            // set_script_offsets_internal may have modified
            // m_lexical_frame_offsets and m_value_offsets.

            frame_offset = m_lexical_frame_offsets.at (data_offset);
          }

        data_offset = m_value_offsets.at (data_offset);
      }
    else
      {
        // If frame_offset is not zero, then then we must have a symbol
        // that was not originally in the script.  The values were
        // determined by the script_stack_frame::lookup function.
      }
  }

  stack_frame::scope_flags
  script_stack_frame::scope_flag (const symbol_record& sym) const
  {
    std::size_t frame_offset;
    std::size_t data_offset;

    bool found = get_val_offsets (sym, frame_offset, data_offset);

    // It can't be global or persistent, so call it local.
    if (! found)
      return LOCAL;

    // Follow frame_offset access links to stack frame that holds
    // the value.

    const stack_frame *frame = this;

    for (std::size_t i = 0; i < frame_offset; i++)
      {
        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    if (! frame)
      error ("internal error: invalid access link in function call stack");

    if (data_offset >= frame->size ())
      return LOCAL;

    return frame->get_scope_flag (data_offset);
  }

  octave_value script_stack_frame::varval (const symbol_record& sym) const
  {
    std::size_t frame_offset;
    std::size_t data_offset;

    bool found = get_val_offsets (sym, frame_offset, data_offset);

    if (! found)
      return octave_value ();

    // Follow frame_offset access links to stack frame that holds
    // the value.

    const stack_frame *frame = this;

    for (std::size_t i = 0; i < frame_offset; i++)
      {
        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    if (! frame)
      error ("internal error: invalid access link in function call stack");

    if (data_offset >= frame->size ())
      return octave_value ();

    switch (frame->get_scope_flag (data_offset))
      {
      case LOCAL:
        return frame->varval (data_offset);

      case PERSISTENT:
        {
          symbol_scope scope = frame->get_scope ();

          return scope.persistent_varval (data_offset);
        }

      case GLOBAL:
        return m_evaluator.global_varval (sym.name ());
      }

    error ("internal error: invalid switch case");
  }

  octave_value& script_stack_frame::varref (const symbol_record& sym)
  {
    std::size_t frame_offset;
    std::size_t data_offset;
    get_val_offsets_with_insert (sym, frame_offset, data_offset);

    // Follow frame_offset access links to stack frame that holds
    // the value.

    stack_frame *frame = this;

    for (std::size_t i = 0; i < frame_offset; i++)
      {
        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    if (data_offset >= frame->size ())
      frame->resize (data_offset+1);

    switch (frame->get_scope_flag (data_offset))
      {
      case LOCAL:
        return frame->varref (data_offset);

      case PERSISTENT:
        {
          symbol_scope scope = frame->get_scope ();

          return scope.persistent_varref (data_offset);
        }

      case GLOBAL:
        return m_evaluator.global_varref (sym.name ());
      }

    error ("internal error: invalid switch case");
  }

  void script_stack_frame::mark_scope (const symbol_record& sym,
                                       scope_flags flag)
  {
    std::size_t data_offset = sym.data_offset ();

    if (data_offset >= size ())
      resize_and_update_script_offsets (sym);

    // Redirection to evaluation context for the script.

    std::size_t frame_offset = m_lexical_frame_offsets.at (data_offset);
    data_offset = m_value_offsets.at (data_offset);

    if (frame_offset > 1)
      error ("variables must be made PERSISTENT or GLOBAL in the first scope in which they are used");

    std::shared_ptr<stack_frame> frame = access_link ();

    if (data_offset >= frame->size ())
      frame->resize (data_offset+1);

    frame->set_scope_flag (data_offset, flag);
  }

  void script_stack_frame::display (bool follow) const
  {
    std::ostream& os = octave_stdout;

    os << "-- [script_stack_frame] (" << this << ") --" << std::endl;
    stack_frame::display (follow);

    os << "script: " << m_script->name ()
       << " (" << m_script->type_name () << ")" << std::endl;

    os << "lexical_offsets: " << m_lexical_frame_offsets.size ()
       << " elements:";

    for (std::size_t i = 0; i < m_lexical_frame_offsets.size (); i++)
      os << "  " << m_lexical_frame_offsets.at (i);
    os << std::endl;

    os << "value_offsets: " << m_value_offsets.size () << " elements:";
    for (std::size_t i = 0; i < m_value_offsets.size (); i++)
      os << "  " << m_value_offsets.at (i);
    os << std::endl;

    display_scope (os, get_scope ());
  }

  void script_stack_frame::accept (stack_frame_walker& sfw)
  {
    sfw.visit_script_stack_frame (*this);
  }

  void base_value_stack_frame::display (bool follow) const
  {
    std::ostream& os = octave_stdout;

    os << "-- [base_value_stack_frame] (" << this << ") --" << std::endl;
    stack_frame::display (follow);

    os << "values: " << m_values.size ()
       << " elements (idx, scope flag, type):" << std::endl;

    for (std::size_t i = 0; i < m_values.size (); i++)
      {
        os << "  (" << i << ", " << m_flags.at (i) << ", ";

        octave_value val = varval (i);

        os << (val.is_defined () ? val.type_name () : " UNDEFINED") << ")"
           << std::endl;
      }
  }

  // If this is a nested scope, set access_link to nearest parent
  // stack frame that corresponds to the lexical parent of this scope.

  std::shared_ptr<stack_frame>
  user_fcn_stack_frame::get_access_link (octave_user_function *fcn,
                                         const std::shared_ptr<stack_frame>& static_link)
  {
    std::shared_ptr<stack_frame> alink;

    symbol_scope fcn_scope = fcn->scope ();

    if (fcn_scope.is_nested ())
      {
        if (! static_link)
          error ("internal call stack error (invalid static link)");

        symbol_scope caller_scope = static_link->get_scope ();

        int nesting_depth = fcn_scope.nesting_depth ();
        int caller_nesting_depth = caller_scope.nesting_depth ();

        if (caller_nesting_depth < nesting_depth)
          {
            // FIXME: do we need to ensure that the called
            // function is a child of the caller?  Does it hurt
            // to panic_unless this condition, at least for now?

            alink = static_link;
          }
        else
          {
            // FIXME: do we need to check that the parent of the
            // called function is also a parent of the caller?
            // Does it hurt to panic_unless this condition, at least
            // for now?

            int links_to_follow = caller_nesting_depth - nesting_depth + 1;

            alink = static_link;

            while (alink && --links_to_follow >= 0)
              alink = alink->access_link ();

            if (! alink)
              error ("internal function nesting error (invalid access link)");
          }
      }

    return alink;
  }

  void user_fcn_stack_frame::clear_values (void)
  {
    symbol_scope fcn_scope = m_fcn->scope ();

    const std::list<symbol_record>& symbols = fcn_scope.symbol_list ();

    if (size () == 0)
      return;

    for (const auto& sym : symbols)
      {
        std::size_t frame_offset = sym.frame_offset ();

        if (frame_offset > 0)
          continue;

        std::size_t data_offset = sym.data_offset ();

        if (data_offset >= size ())
          continue;

        if (get_scope_flag (data_offset) == LOCAL)
          {
            octave_value& ref = m_values.at (data_offset);

            if (ref.get_count () == 1)
              {
                ref.call_object_destructor ();
                ref = octave_value ();
              }
          }
      }
  }

  unwind_protect * user_fcn_stack_frame::unwind_protect_frame (void)
  {
    if (! m_unwind_protect_frame)
      m_unwind_protect_frame = new unwind_protect ();

    return m_unwind_protect_frame;
  }

  symbol_record user_fcn_stack_frame::lookup_symbol (const std::string& name) const
  {
    const stack_frame *frame = this;

    while (frame)
      {
        symbol_scope scope = frame->get_scope ();

        symbol_record sym = scope.lookup_symbol (name);

        if (sym)
          return sym;

        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    return symbol_record ();
  }

  symbol_record user_fcn_stack_frame::insert_symbol (const std::string& name)
  {
    // If the symbols is already in the immediate scope, there is
    // nothing more to do.

    symbol_scope scope = get_scope ();

    symbol_record sym = scope.lookup_symbol (name);

    if (sym)
      return sym;

    // FIXME: This needs some thought... We may need to add a symbol to
    // a static workspace, but the symbol can never be defined as a
    // variable.  This currently works by tagging the added symbol as
    // "added_static".  Aside from the bad name, this doesn't seem like
    // the best solution.  Maybe scopes should have a separate set of
    // symbols that may only be defined as functions?

    // Insert the symbol in the current scope.  This is not possible for
    // anonymous functions, nested functions, or functions that contain
    // nested functions (their scopes will all be marked static).

    //    if (scope.is_static ())
    //      error ("can not add variable '%s' to a static workspace",
    //             name.c_str ());

    // At this point, non-local references are not possible so we only
    // need to look in the current scope and insert there.  This
    // operation should never fail.

    sym = scope.find_symbol (name);

    panic_unless (sym.is_valid ());

    return sym;
  }

  stack_frame::scope_flags
  user_fcn_stack_frame::scope_flag (const symbol_record& sym) const
  {
    std::size_t frame_offset = sym.frame_offset ();
    std::size_t data_offset = sym.data_offset ();

    // Follow frame_offset access links to stack frame that holds
    // the value.

    const stack_frame *frame = this;

    for (std::size_t i = 0; i < frame_offset; i++)
      {
        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    if (! frame)
      error ("internal error: invalid access link in function call stack");

    if (data_offset >= frame->size ())
      return LOCAL;

    return frame->get_scope_flag (data_offset);
  }

  octave_value user_fcn_stack_frame::varval (const symbol_record& sym) const
  {
    std::size_t frame_offset = sym.frame_offset ();
    std::size_t data_offset = sym.data_offset ();

    // Follow frame_offset access links to stack frame that holds
    // the value.

    const stack_frame *frame = this;

    for (std::size_t i = 0; i < frame_offset; i++)
      {
        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    if (! frame)
      error ("internal error: invalid access link in function call stack");

    if (data_offset >= frame->size ())
      return octave_value ();

    switch (frame->get_scope_flag (data_offset))
      {
      case LOCAL:
        return frame->varval (data_offset);

      case PERSISTENT:
        {
          symbol_scope scope = frame->get_scope ();

          return scope.persistent_varval (data_offset);
        }

      case GLOBAL:
        return m_evaluator.global_varval (sym.name ());
      }

    error ("internal error: invalid switch case");
  }

  octave_value& user_fcn_stack_frame::varref (const symbol_record& sym)
  {
    std::size_t frame_offset = sym.frame_offset ();
    std::size_t data_offset = sym.data_offset ();

    // Follow frame_offset access links to stack frame that holds
    // the value.

    stack_frame *frame = this;

    for (std::size_t i = 0; i < frame_offset; i++)
      {
        std::shared_ptr<stack_frame> nxt = frame->access_link ();
        frame = nxt.get ();
      }

    if (data_offset >= frame->size ())
      frame->resize (data_offset+1);

    switch (frame->get_scope_flag (data_offset))
      {
      case LOCAL:
        return frame->varref (data_offset);

      case PERSISTENT:
        {
          symbol_scope scope = frame->get_scope ();

          return scope.persistent_varref (data_offset);
        }

      case GLOBAL:
        return m_evaluator.global_varref (sym.name ());
      }

    error ("internal error: invalid switch case");
  }

  void user_fcn_stack_frame::mark_scope (const symbol_record& sym, scope_flags flag)
  {
    std::size_t frame_offset = sym.frame_offset ();

    if (frame_offset > 0 && (flag == PERSISTENT || flag == GLOBAL))
      error ("variables must be made PERSISTENT or GLOBAL in the first scope in which they are used");

    std::size_t data_offset = sym.data_offset ();

    if (data_offset >= size ())
      resize (data_offset+1);

    set_scope_flag (data_offset, flag);
  }

  void user_fcn_stack_frame::display (bool follow) const
  {
    std::ostream& os = octave_stdout;

    os << "-- [user_fcn_stack_frame] (" << this << ") --" << std::endl;
    base_value_stack_frame::display (follow);

    os << "fcn: " << m_fcn->name ()
       << " (" << m_fcn->type_name () << ")" << std::endl;

    display_scope (os, get_scope ());
  }

  void user_fcn_stack_frame::accept (stack_frame_walker& sfw)
  {
    sfw.visit_user_fcn_stack_frame (*this);
  }

  void user_fcn_stack_frame::break_closure_cycles (const std::shared_ptr<stack_frame>& frame)
  {
    for (auto& val : m_values)
      val.break_closure_cycles (frame);

    if (m_access_link)
      m_access_link->break_closure_cycles (frame);
  }

  symbol_record scope_stack_frame::insert_symbol (const std::string& name)
  {
    // There is no access link for scope frames, so there is no other
    // frame to search in and the offset must be zero.

    symbol_record sym = m_scope.lookup_symbol (name);

    if (sym)
      return sym;

    // If the symbol is not found, insert it.  We only need to search in
    // the local scope object.  This operation should never fail.

    sym = m_scope.find_symbol (name);

    panic_unless (sym.is_valid ());

    return sym;
  }

  stack_frame::scope_flags
  scope_stack_frame::scope_flag (const symbol_record& sym) const
  {
    // There is no access link for scope frames, so the frame
    // offset must be zero.

    std::size_t data_offset = sym.data_offset ();

    if (data_offset >= size ())
      return LOCAL;

    return get_scope_flag (data_offset);
  }

  octave_value scope_stack_frame::varval (const symbol_record& sym) const
  {
    // There is no access link for scope frames, so the frame
    // offset must be zero.

    std::size_t data_offset = sym.data_offset ();

    if (data_offset >= size ())
      return octave_value ();

    switch (get_scope_flag (data_offset))
      {
      case LOCAL:
        return m_values.at (data_offset);

      case PERSISTENT:
        return m_scope.persistent_varval (data_offset);

      case GLOBAL:
        return m_evaluator.global_varval (sym.name ());
      }

    error ("internal error: invalid switch case");
  }

  octave_value& scope_stack_frame::varref (const symbol_record& sym)
  {
    // There is no access link for scope frames, so the frame
    // offset must be zero.

    std::size_t data_offset = sym.data_offset ();

    if (data_offset >= size ())
      resize (data_offset+1);

    switch (get_scope_flag (data_offset))
      {
      case LOCAL:
        return m_values.at (data_offset);

      case PERSISTENT:
        return m_scope.persistent_varref (data_offset);

      case GLOBAL:
        return m_evaluator.global_varref (sym.name ());
      }

    error ("internal error: invalid switch case");
  }

  void scope_stack_frame::mark_scope (const symbol_record& sym,
                                      scope_flags flag)
  {
    // There is no access link for scope frames, so the frame
    // offset must be zero.

    std::size_t data_offset = sym.data_offset ();

    if (data_offset >= size ())
      resize (data_offset+1);

    set_scope_flag (data_offset, flag);
  }

  void scope_stack_frame::display (bool follow) const
  {
    std::ostream& os = octave_stdout;

    os << "-- [scope_stack_frame] (" << this << ") --" << std::endl;
    base_value_stack_frame::display (follow);

    display_scope (os, m_scope);
  }

  void scope_stack_frame::accept (stack_frame_walker& sfw)
  {
    sfw.visit_scope_stack_frame (*this);
  }

OCTAVE_END_NAMESPACE(octave)