view liboctave/array/MatrixType.cc @ 31605:e88a07dec498 stable

maint: Use macros to begin/end C++ namespaces. * oct-conf-post-public.in.h: Define two macros (OCTAVE_BEGIN_NAMESPACE, OCTAVE_END_NAMESPACE) that can be used to start/end a namespace. * mk-opts.pl, build-env.h, build-env.in.cc, __betainc__.cc, __contourc__.cc, __dsearchn__.cc, __eigs__.cc, __expint__.cc, __ftp__.cc, __gammainc__.cc, __ichol__.cc, __ilu__.cc, __isprimelarge__.cc, __lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, amd.cc, auto-shlib.cc, auto-shlib.h, balance.cc, base-text-renderer.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, ccolamd.cc, cellfun.cc, chol.cc, colamd.cc, colloc.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, data.h, debug.cc, defaults.cc, defaults.h, defun-int.h, defun.cc, det.cc, dirfns.cc, display.cc, display.h, dlmread.cc, dmperm.cc, dot.cc, dynamic-ld.cc, dynamic-ld.h, eig.cc, ellipj.cc, environment.cc, environment.h, error.cc, error.h, errwarn.h, event-manager.cc, event-manager.h, event-queue.cc, event-queue.h, fcn-info.cc, fcn-info.h, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics-toolkit.cc, graphics-toolkit.h, graphics.cc, graphics.in.h, gsvd.cc, gtk-manager.cc, gtk-manager.h, hash.cc, help.cc, help.h, hess.cc, hex2num.cc, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter-private.cc, interpreter-private.h, interpreter.cc, interpreter.h, inv.cc, jsondecode.cc, jsonencode.cc, kron.cc, latex-text-renderer.cc, latex-text-renderer.h, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-ascii-helper.cc, ls-ascii-helper.h, ls-oct-text.cc, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mex-private.h, mex.cc, mgorth.cc, nproc.cc, oct-fstrm.cc, oct-fstrm.h, oct-hdf5-types.cc, oct-hdf5-types.h, oct-hist.cc, oct-hist.h, oct-iostrm.cc, oct-iostrm.h, oct-opengl.h, oct-prcstrm.cc, oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-process.cc, oct-process.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct-tex-lexer.in.ll, oct-tex-parser.yy, ordqz.cc, ordschur.cc, pager.cc, pager.h, pinv.cc, pow2.cc, pr-flt-fmt.cc, pr-output.cc, procstream.cc, procstream.h, psi.cc, qr.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, settings.cc, settings.h, sighandlers.cc, sighandlers.h, sparse-xdiv.cc, sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, sparse.cc, spparms.cc, sqrtm.cc, stack-frame.cc, stack-frame.h, stream-euler.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symbfact.cc, syminfo.cc, syminfo.h, symrcm.cc, symrec.cc, symrec.h, symscope.cc, symscope.h, symtab.cc, symtab.h, syscalls.cc, sysdep.cc, sysdep.h, text-engine.cc, text-engine.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, url-handle-manager.cc, url-handle-manager.h, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, xdiv.cc, xdiv.h, xnorm.cc, xnorm.h, xpow.cc, xpow.h, __delaunayn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __ode15__.cc, __voronoi__.cc, audiodevinfo.cc, audioread.cc, convhulln.cc, fftw.cc, gzip.cc, mk-build-env-features.sh, mk-builtins.pl, cdef-class.cc, cdef-class.h, cdef-fwd.h, cdef-manager.cc, cdef-manager.h, cdef-method.cc, cdef-method.h, cdef-object.cc, cdef-object.h, cdef-package.cc, cdef-package.h, cdef-property.cc, cdef-property.h, cdef-utils.cc, cdef-utils.h, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-builtin.h, ov-cell.cc, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn.h, ov-java.cc, ov-java.h, ov-mex-fcn.h, ov-null-mat.cc, ov-oncleanup.cc, ov-struct.cc, ov-typeinfo.cc, ov-typeinfo.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, octave.cc, octave.h, mk-ops.sh, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-mi.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, anon-fcn-validator.cc, anon-fcn-validator.h, bp-table.cc, bp-table.h, comment-list.cc, comment-list.h, filepos.h, lex.h, lex.ll, oct-lvalue.cc, oct-lvalue.h, oct-parse.yy, parse.h, profiler.cc, profiler.h, pt-anon-scopes.cc, pt-anon-scopes.h, pt-arg-list.cc, pt-arg-list.h, pt-args-block.cc, pt-args-block.h, pt-array-list.cc, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-spmd.cc, pt-spmd.h, pt-stmt.cc, pt-stmt.h, pt-tm-const.cc, pt-tm-const.h, pt-unop.cc, pt-unop.h, pt-vm-eval.cc, pt-walk.cc, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Range.cc, Range.h, idx-vector.cc, idx-vector.h, range-fwd.h, CollocWt.cc, CollocWt.h, aepbalance.cc, aepbalance.h, chol.cc, chol.h, gepbalance.cc, gepbalance.h, gsvd.cc, gsvd.h, hess.cc, hess.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, lu.cc, lu.h, oct-convn.cc, oct-convn.h, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-norm.h, oct-rand.cc, oct-rand.h, oct-spparms.cc, oct-spparms.h, qr.cc, qr.h, qrp.cc, qrp.h, randgamma.cc, randgamma.h, randmtzig.cc, randmtzig.h, randpoisson.cc, randpoisson.h, schur.cc, schur.h, sparse-chol.cc, sparse-chol.h, sparse-lu.cc, sparse-lu.h, sparse-qr.cc, sparse-qr.h, svd.cc, svd.h, child-list.cc, child-list.h, dir-ops.cc, dir-ops.h, file-ops.cc, file-ops.h, file-stat.cc, file-stat.h, lo-sysdep.cc, lo-sysdep.h, lo-sysinfo.cc, lo-sysinfo.h, mach-info.cc, mach-info.h, oct-env.cc, oct-env.h, oct-group.cc, oct-group.h, oct-password.cc, oct-password.h, oct-syscalls.cc, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.cc, oct-uname.h, action-container.cc, action-container.h, base-list.h, cmd-edit.cc, cmd-edit.h, cmd-hist.cc, cmd-hist.h, f77-fcn.h, file-info.cc, file-info.h, lo-array-errwarn.cc, lo-array-errwarn.h, lo-hash.cc, lo-hash.h, lo-ieee.h, lo-regexp.cc, lo-regexp.h, lo-utils.cc, lo-utils.h, oct-base64.cc, oct-base64.h, oct-glob.cc, oct-glob.h, oct-inttypes.h, oct-mutex.cc, oct-mutex.h, oct-refcount.h, oct-shlib.cc, oct-shlib.h, oct-sparse.cc, oct-sparse.h, oct-string.h, octave-preserve-stream-state.h, pathsearch.cc, pathsearch.h, quit.cc, quit.h, unwind-prot.cc, unwind-prot.h, url-transfer.cc, url-transfer.h : Use new macros to begin/end C++ namespaces.
author Rik <rik@octave.org>
date Thu, 01 Dec 2022 14:23:45 -0800
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2006-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cinttypes>
#include <vector>

#include "MatrixType.h"
#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"
#include "dSparse.h"
#include "CSparse.h"
#include "oct-spparms.h"
#include "oct-locbuf.h"

static void
warn_cached (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "using cached matrix type");
}

static void
warn_invalid (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "invalid matrix type");
}

static void
warn_calculating_sparse_type (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "calculating sparse matrix type");
}

// FIXME: There is a large code duplication here

MatrixType::MatrixType (void)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (octave::sparse_params::get_bandden ()),
    m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (false), m_nperm (0), m_perm (nullptr) { }

MatrixType::MatrixType (const MatrixType& a)
  : m_type (a.m_type), m_sp_bandden (a.m_sp_bandden), m_bandden (a.m_bandden),
    m_upper_band (a.m_upper_band), m_lower_band (a.m_lower_band),
    m_dense (a.m_dense), m_full (a.m_full),
    m_nperm (a.m_nperm), m_perm (nullptr)
{
  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = a.m_perm[i];
    }
}

template <typename T>
MatrixType::matrix_type
matrix_real_probe (const MArray<T>& a)
{
  MatrixType::matrix_type m_type;
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();

  const T zero = 0;

  if (ncols == nrows)
    {
      bool upper = true;
      bool lower = true;
      bool hermitian = true;

      // do the checks for lower/upper/hermitian all in one pass.
      OCTAVE_LOCAL_BUFFER (T, diag, ncols);

      for (octave_idx_type j = 0;
           j < ncols && upper; j++)
        {
          T d = a.elem (j, j);
          upper = upper && (d != zero);
          lower = lower && (d != zero);
          hermitian = hermitian && (d > zero);
          diag[j] = d;
        }

      for (octave_idx_type j = 0;
           j < ncols && (upper || lower || hermitian); j++)
        {
          for (octave_idx_type i = 0; i < j; i++)
            {
              T aij = a.elem (i, j);
              T aji = a.elem (j, i);
              lower = lower && (aij == zero);
              upper = upper && (aji == zero);
              hermitian = hermitian && (aij == aji
                                        && aij*aij < diag[i]*diag[j]);
            }
        }

      if (upper)
        m_type = MatrixType::Upper;
      else if (lower)
        m_type = MatrixType::Lower;
      else if (hermitian)
        m_type = MatrixType::Hermitian;
      else
        m_type = MatrixType::Full;
    }
  else
    m_type = MatrixType::Rectangular;

  return m_type;
}

template <typename T>
MatrixType::matrix_type
matrix_complex_probe (const MArray<std::complex<T>>& a)
{
  MatrixType::matrix_type m_type = MatrixType::Unknown;
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();

  const T zero = 0;
  // get the real type

  if (ncols == nrows)
    {
      bool upper = true;
      bool lower = true;
      bool hermitian = true;

      // do the checks for lower/upper/hermitian all in one pass.
      OCTAVE_LOCAL_BUFFER (T, diag, ncols);

      for (octave_idx_type j = 0;
           j < ncols && upper; j++)
        {
          std::complex<T> d = a.elem (j, j);
          upper = upper && (d != zero);
          lower = lower && (d != zero);
          hermitian = hermitian && (d.real () > zero && d.imag () == zero);
          diag[j] = d.real ();
        }

      for (octave_idx_type j = 0;
           j < ncols && (upper || lower || hermitian); j++)
        {
          for (octave_idx_type i = 0; i < j; i++)
            {
              std::complex<T> aij = a.elem (i, j);
              std::complex<T> aji = a.elem (j, i);
              lower = lower && (aij == zero);
              upper = upper && (aji == zero);
              hermitian = hermitian && (aij == octave::math::conj (aji)
                                        && std::norm (aij) < diag[i]*diag[j]);
            }
        }

      if (upper)
        m_type = MatrixType::Upper;
      else if (lower)
        m_type = MatrixType::Lower;
      else if (hermitian)
        m_type = MatrixType::Hermitian;
      else
        m_type = MatrixType::Full;
    }
  else
    m_type = MatrixType::Rectangular;

  return m_type;
}

MatrixType::MatrixType (const Matrix& a)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (0), m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (true), m_nperm (0), m_perm (nullptr)
{
  m_type = matrix_real_probe (a);
}

MatrixType::MatrixType (const ComplexMatrix& a)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (0), m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (true), m_nperm (0), m_perm (nullptr)
{
  m_type = matrix_complex_probe (a);
}

MatrixType::MatrixType (const FloatMatrix& a)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (0), m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (true), m_nperm (0), m_perm (nullptr)
{
  m_type = matrix_real_probe (a);
}

MatrixType::MatrixType (const FloatComplexMatrix& a)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (0), m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (true), m_nperm (0), m_perm (nullptr)
{
  m_type = matrix_complex_probe (a);
}


template <typename T>
MatrixType::MatrixType (const MSparse<T>& a)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (0), m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (false), m_nperm (0), m_perm (nullptr)
{
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();
  octave_idx_type nm = (ncols < nrows ? ncols : nrows);
  octave_idx_type nnz = a.nnz ();

  if (octave::sparse_params::get_key ("spumoni") != 0.)
    warn_calculating_sparse_type ();

  m_sp_bandden = octave::sparse_params::get_bandden ();
  bool maybe_hermitian = false;
  m_type = MatrixType::Full;

  if (nnz == nm)
    {
      matrix_type tmp_typ = MatrixType::Diagonal;
      octave_idx_type i;
      // Maybe the matrix is diagonal
      for (i = 0; i < nm; i++)
        {
          if (a.cidx (i+1) != a.cidx (i) + 1)
            {
              tmp_typ = MatrixType::Full;
              break;
            }
          if (a.ridx (i) != i)
            {
              tmp_typ = MatrixType::Permuted_Diagonal;
              break;
            }
        }

      if (tmp_typ == MatrixType::Permuted_Diagonal)
        {
          std::vector<bool> found (nrows);

          for (octave_idx_type j = 0; j < i; j++)
            found[j] = true;
          for (octave_idx_type j = i; j < nrows; j++)
            found[j] = false;

          for (octave_idx_type j = i; j < nm; j++)
            {
              if ((a.cidx (j+1) > a.cidx (j) + 1)
                  || ((a.cidx (j+1) == a.cidx (j) + 1) && found[a.ridx (j)]))
                {
                  tmp_typ = MatrixType::Full;
                  break;
                }
              found[a.ridx (j)] = true;
            }
        }
      m_type = tmp_typ;
    }

  if (m_type == MatrixType::Full)
    {
      // Search for banded, upper and lower triangular matrices
      bool singular = false;
      m_upper_band = 0;
      m_lower_band = 0;
      for (octave_idx_type j = 0; j < ncols; j++)
        {
          bool zero_on_diagonal = false;
          if (j < nrows)
            {
              zero_on_diagonal = true;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                if (a.ridx (i) == j)
                  {
                    zero_on_diagonal = false;
                    break;
                  }
            }

          if (zero_on_diagonal)
            {
              singular = true;
              break;
            }

          if (a.cidx (j+1) != a.cidx (j))
            {
              octave_idx_type ru = a.ridx (a.cidx (j));
              octave_idx_type rl = a.ridx (a.cidx (j+1)-1);

              if (j - ru > m_upper_band)
                m_upper_band = j - ru;

              if (rl - j > m_lower_band)
                m_lower_band = rl - j;
            }
        }

      if (! singular)
        {
          m_bandden = double (nnz) /
                      (double (ncols) * (double (m_lower_band) +
                                         double (m_upper_band)) -
                       0.5 * double (m_upper_band + 1) * double (m_upper_band) -
                       0.5 * double (m_lower_band + 1) * double (m_lower_band));

          if (nrows == ncols && m_sp_bandden != 1. && m_bandden > m_sp_bandden)
            {
              if (m_upper_band == 1 && m_lower_band == 1)
                m_type = MatrixType::Tridiagonal;
              else
                m_type = MatrixType::Banded;

              octave_idx_type nnz_in_band
                = ((m_upper_band + m_lower_band + 1) * nrows
                   - (1 + m_upper_band) * m_upper_band / 2
                   - (1 + m_lower_band) * m_lower_band / 2);

              if (nnz_in_band == nnz)
                m_dense = true;
              else
                m_dense = false;
            }

          // If a matrix is Banded but also Upper/Lower, set to the latter.
          if (m_upper_band == 0)
            m_type = MatrixType::Lower;
          else if (m_lower_band == 0)
            m_type = MatrixType::Upper;

          if (m_upper_band == m_lower_band && nrows == ncols)
            maybe_hermitian = true;
        }

      if (m_type == MatrixType::Full)
        {
          // Search for a permuted triangular matrix, and test if
          // permutation is singular

          // FIXME: Perhaps this should be based on a dmperm algorithm?
          bool found = false;

          m_nperm = ncols;
          m_perm = new octave_idx_type [ncols];

          for (octave_idx_type i = 0; i < ncols; i++)
            m_perm[i] = -1;

          for (octave_idx_type i = 0; i < nm; i++)
            {
              found = false;

              for (octave_idx_type j = 0; j < ncols; j++)
                {
                  if ((a.cidx (j+1) - a.cidx (j)) > 0
                      && (a.ridx (a.cidx (j+1)-1) == i))
                    {
                      m_perm[i] = j;
                      found = true;
                      break;
                    }
                }

              if (! found)
                break;
            }

          if (found)
            {
              m_type = MatrixType::Permuted_Upper;
              if (ncols > nrows)
                {
                  octave_idx_type k = nrows;
                  for (octave_idx_type i = 0; i < ncols; i++)
                    if (m_perm[i] == -1)
                      m_perm[i] = k++;
                }
            }
          else if (a.cidx (nm) == a.cidx (ncols))
            {
              m_nperm = nrows;
              delete [] m_perm;
              m_perm = new octave_idx_type [nrows];
              OCTAVE_LOCAL_BUFFER (octave_idx_type, tmp, nrows);

              for (octave_idx_type i = 0; i < nrows; i++)
                {
                  m_perm[i] = -1;
                  tmp[i] = -1;
                }

              for (octave_idx_type j = 0; j < ncols; j++)
                for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                  m_perm[a.ridx (i)] = j;

              found = true;
              for (octave_idx_type i = 0; i < nm; i++)
                if (m_perm[i] == -1)
                  {
                    found = false;
                    break;
                  }
                else
                  {
                    tmp[m_perm[i]] = 1;
                  }

              if (found)
                {
                  octave_idx_type k = ncols;
                  for (octave_idx_type i = 0; i < nrows; i++)
                    {
                      if (tmp[i] == -1)
                        {
                          if (k < nrows)
                            {
                              m_perm[k++] = i;
                            }
                          else
                            {
                              found = false;
                              break;
                            }
                        }
                    }
                }

              if (found)
                m_type = MatrixType::Permuted_Lower;
              else
                {
                  delete [] m_perm;
                  m_nperm = 0;
                }
            }
          else
            {
              delete [] m_perm;
              m_nperm = 0;
            }
        }

      // FIXME: Disable lower under-determined and upper over-determined
      //        problems as being detected, and force to treat as singular
      //        as this seems to cause issues.
      if (((m_type == MatrixType::Lower
            || m_type == MatrixType::Permuted_Lower)
           && nrows > ncols)
          || ((m_type == MatrixType::Upper
               || m_type == MatrixType::Permuted_Upper)
              && nrows < ncols))
        {
          if (m_type == MatrixType::Permuted_Upper
              || m_type == MatrixType::Permuted_Lower)
            delete [] m_perm;
          m_nperm = 0;
          m_type = MatrixType::Rectangular;
        }

      if (m_type == MatrixType::Full && ncols != nrows)
        m_type = MatrixType::Rectangular;

      if (maybe_hermitian && (m_type == MatrixType::Full
                              || m_type == MatrixType::Tridiagonal
                              || m_type == MatrixType::Banded))
        {
          bool is_herm = true;

          // first, check whether the diagonal is positive & extract it
          ColumnVector diag (ncols);

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            {
              is_herm = false;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                {
                  if (a.ridx (i) == j)
                    {
                      T d = a.data (i);
                      is_herm = (std::real (d) > 0.0
                                 && std::imag (d) == 0.0);
                      diag(j) = std::real (d);
                      break;
                    }
                }
            }

          // next, check symmetry and 2x2 positiveness

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            for (octave_idx_type i = a.cidx (j); is_herm && i < a.cidx (j+1); i++)
              {
                octave_idx_type k = a.ridx (i);
                is_herm = k == j;
                if (is_herm)
                  continue;

                T d = a.data (i);
                if (std::norm (d) < diag(j)*diag(k))
                  {
                    d = octave::math::conj (d);
                    for (octave_idx_type l = a.cidx (k); l < a.cidx (k+1); l++)
                      {
                        if (a.ridx (l) == j)
                          {
                            is_herm = a.data (l) == d;
                            break;
                          }
                      }
                  }
              }

          if (is_herm)
            {
              if (m_type == MatrixType::Full)
                m_type = MatrixType::Hermitian;
              else if (m_type == MatrixType::Banded)
                m_type = MatrixType::Banded_Hermitian;
              else
                m_type = MatrixType::Tridiagonal_Hermitian;
            }
        }
    }
}


MatrixType::MatrixType (const matrix_type t, bool _full)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (octave::sparse_params::get_bandden ()),
    m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (_full), m_nperm (0), m_perm (nullptr)
{
  if (t == MatrixType::Unknown || t == MatrixType::Full
      || t == MatrixType::Diagonal || t == MatrixType::Permuted_Diagonal
      || t == MatrixType::Upper || t == MatrixType::Lower
      || t == MatrixType::Tridiagonal || t == MatrixType::Tridiagonal_Hermitian
      || t == MatrixType::Rectangular)
    m_type = t;
  else
    warn_invalid ();
}

MatrixType::MatrixType (const matrix_type t, const octave_idx_type np,
                        const octave_idx_type *p, bool _full)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (octave::sparse_params::get_bandden ()),
    m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (_full), m_nperm (0), m_perm (nullptr)
{
  if ((t == MatrixType::Permuted_Upper || t == MatrixType::Permuted_Lower)
      && np > 0 && p != nullptr)
    {
      m_type = t;
      m_nperm = np;
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = p[i];
    }
  else
    warn_invalid ();
}

MatrixType::MatrixType (const matrix_type t, const octave_idx_type ku,
                        const octave_idx_type kl, bool _full)
  : m_type (MatrixType::Unknown),
    m_sp_bandden (octave::sparse_params::get_bandden ()),
    m_bandden (0), m_upper_band (0), m_lower_band (0),
    m_dense (false), m_full (_full), m_nperm (0), m_perm (nullptr)
{
  if (t == MatrixType::Banded || t == MatrixType::Banded_Hermitian)
    {
      m_type = t;
      m_upper_band = ku;
      m_lower_band = kl;
    }
  else
    warn_invalid ();
}

MatrixType::~MatrixType (void)
{
  if (m_nperm != 0)
    {
      delete [] m_perm;
    }
}

MatrixType&
MatrixType::operator = (const MatrixType& a)
{
  if (this != &a)
    {
      m_type = a.m_type;
      m_sp_bandden = a.m_sp_bandden;
      m_bandden = a.m_bandden;
      m_upper_band = a.m_upper_band;
      m_lower_band = a.m_lower_band;
      m_dense = a.m_dense;
      m_full = a.m_full;

      if (m_nperm)
        {
          delete[] m_perm;
        }

      if (a.m_nperm != 0)
        {
          m_perm = new octave_idx_type [a.m_nperm];
          for (octave_idx_type i = 0; i < a.m_nperm; i++)
            m_perm[i] = a.m_perm[i];
        }

      m_nperm = a.m_nperm;
    }

  return *this;
}

int
MatrixType::type (bool quiet)
{
  if (m_type != MatrixType::Unknown
      && (m_full || m_sp_bandden == octave::sparse_params::get_bandden ()))
    {
      if (! quiet && octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  if (m_type != MatrixType::Unknown
      && octave::sparse_params::get_key ("spumoni") != 0.)
    (*current_liboctave_warning_with_id_handler)
      ("Octave:matrix-type-info", "invalidating matrix type");

  m_type = MatrixType::Unknown;

  return m_type;
}

int
MatrixType::type (const SparseMatrix& a)
{
  if (m_type != MatrixType::Unknown
      && (m_full || m_sp_bandden == octave::sparse_params::get_bandden ()))
    {
      if (octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  MatrixType tmp_typ (a);
  m_type = tmp_typ.m_type;
  m_sp_bandden = tmp_typ.m_sp_bandden;
  m_bandden = tmp_typ.m_bandden;
  m_upper_band = tmp_typ.m_upper_band;
  m_lower_band = tmp_typ.m_lower_band;
  m_dense = tmp_typ.m_dense;
  m_full = tmp_typ.m_full;
  m_nperm = tmp_typ.m_nperm;

  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = tmp_typ.m_perm[i];
    }

  return m_type;
}

int
MatrixType::type (const SparseComplexMatrix& a)
{
  if (m_type != MatrixType::Unknown
      && (m_full || m_sp_bandden == octave::sparse_params::get_bandden ()))
    {
      if (octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  MatrixType tmp_typ (a);
  m_type = tmp_typ.m_type;
  m_sp_bandden = tmp_typ.m_sp_bandden;
  m_bandden = tmp_typ.m_bandden;
  m_upper_band = tmp_typ.m_upper_band;
  m_lower_band = tmp_typ.m_lower_band;
  m_dense = tmp_typ.m_dense;
  m_full = tmp_typ.m_full;
  m_nperm = tmp_typ.m_nperm;

  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = tmp_typ.m_perm[i];
    }

  return m_type;
}

int
MatrixType::type (const Matrix& a)
{
  if (m_type != MatrixType::Unknown)
    {
      if (octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  MatrixType tmp_typ (a);
  m_type = tmp_typ.m_type;
  m_full = tmp_typ.m_full;
  m_nperm = tmp_typ.m_nperm;

  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = tmp_typ.m_perm[i];
    }

  return m_type;
}

int
MatrixType::type (const ComplexMatrix& a)
{
  if (m_type != MatrixType::Unknown)
    {
      if (octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  MatrixType tmp_typ (a);
  m_type = tmp_typ.m_type;
  m_full = tmp_typ.m_full;
  m_nperm = tmp_typ.m_nperm;

  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = tmp_typ.m_perm[i];
    }

  return m_type;
}

int
MatrixType::type (const FloatMatrix& a)
{
  if (m_type != MatrixType::Unknown)
    {
      if (octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  MatrixType tmp_typ (a);
  m_type = tmp_typ.m_type;
  m_full = tmp_typ.m_full;
  m_nperm = tmp_typ.m_nperm;

  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = tmp_typ.m_perm[i];
    }

  return m_type;
}

int
MatrixType::type (const FloatComplexMatrix& a)
{
  if (m_type != MatrixType::Unknown)
    {
      if (octave::sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return m_type;
    }

  MatrixType tmp_typ (a);
  m_type = tmp_typ.m_type;
  m_full = tmp_typ.m_full;
  m_nperm = tmp_typ.m_nperm;

  if (m_nperm != 0)
    {
      m_perm = new octave_idx_type [m_nperm];
      for (octave_idx_type i = 0; i < m_nperm; i++)
        m_perm[i] = tmp_typ.m_perm[i];
    }

  return m_type;
}

void
MatrixType::info () const
{
  if (octave::sparse_params::get_key ("spumoni") != 0.)
    {
      if (m_type == MatrixType::Unknown)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "unknown matrix type");
      else if (m_type == MatrixType::Diagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "diagonal sparse matrix");
      else if (m_type == MatrixType::Permuted_Diagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted diagonal sparse matrix");
      else if (m_type == MatrixType::Upper)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "upper triangular matrix");
      else if (m_type == MatrixType::Lower)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "lower triangular matrix");
      else if (m_type == MatrixType::Permuted_Upper)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted upper triangular matrix");
      else if (m_type == MatrixType::Permuted_Lower)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted lower triangular Matrix");
      else if (m_type == MatrixType::Banded)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "banded sparse matrix %" OCTAVE_IDX_TYPE_FORMAT "-1-"
           "%" OCTAVE_IDX_TYPE_FORMAT " (density %f)",
           m_lower_band, m_upper_band, m_bandden);
      else if (m_type == MatrixType::Banded_Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "banded hermitian/symmetric sparse matrix %" OCTAVE_IDX_TYPE_FORMAT
           "-1-%" OCTAVE_IDX_TYPE_FORMAT " (density %f)",
           m_lower_band, m_upper_band, m_bandden);
      else if (m_type == MatrixType::Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "hermitian/symmetric matrix");
      else if (m_type == MatrixType::Tridiagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "tridiagonal sparse matrix");
      else if (m_type == MatrixType::Tridiagonal_Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "hermitian/symmetric tridiagonal sparse matrix");
      else if (m_type == MatrixType::Rectangular)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "rectangular/singular matrix");
      else if (m_type == MatrixType::Full)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "m_full matrix");
    }
}

void
MatrixType::mark_as_symmetric (void)
{
  if (m_type == MatrixType::Tridiagonal
      || m_type == MatrixType::Tridiagonal_Hermitian)
    m_type = MatrixType::Tridiagonal_Hermitian;
  else if (m_type == MatrixType::Banded
           || m_type == MatrixType::Banded_Hermitian)
    m_type = MatrixType::Banded_Hermitian;
  else if (m_type == MatrixType::Full || m_type == MatrixType::Hermitian
           || m_type == MatrixType::Unknown)
    m_type = MatrixType::Hermitian;
  else
    (*current_liboctave_error_handler)
      ("Can not mark current matrix type as symmetric");
}

void
MatrixType::mark_as_unsymmetric (void)
{
  if (m_type == MatrixType::Tridiagonal
      || m_type == MatrixType::Tridiagonal_Hermitian)
    m_type = MatrixType::Tridiagonal;
  else if (m_type == MatrixType::Banded
           || m_type == MatrixType::Banded_Hermitian)
    m_type = MatrixType::Banded;
  else if (m_type == MatrixType::Full || m_type == MatrixType::Hermitian
           || m_type == MatrixType::Unknown)
    m_type = MatrixType::Full;
}

void
MatrixType::mark_as_permuted (const octave_idx_type np,
                              const octave_idx_type *p)
{
  m_nperm = np;
  m_perm = new octave_idx_type [m_nperm];
  for (octave_idx_type i = 0; i < m_nperm; i++)
    m_perm[i] = p[i];

  if (m_type == MatrixType::Diagonal
      || m_type == MatrixType::Permuted_Diagonal)
    m_type = MatrixType::Permuted_Diagonal;
  else if (m_type == MatrixType::Upper || m_type == MatrixType::Permuted_Upper)
    m_type = MatrixType::Permuted_Upper;
  else if (m_type == MatrixType::Lower || m_type == MatrixType::Permuted_Lower)
    m_type = MatrixType::Permuted_Lower;
  else
    (*current_liboctave_error_handler)
      ("Can not mark current matrix type as symmetric");
}

void
MatrixType::mark_as_unpermuted (void)
{
  if (m_nperm)
    {
      m_nperm = 0;
      delete [] m_perm;
    }

  if (m_type == MatrixType::Diagonal
      || m_type == MatrixType::Permuted_Diagonal)
    m_type = MatrixType::Diagonal;
  else if (m_type == MatrixType::Upper || m_type == MatrixType::Permuted_Upper)
    m_type = MatrixType::Upper;
  else if (m_type == MatrixType::Lower || m_type == MatrixType::Permuted_Lower)
    m_type = MatrixType::Lower;
}

MatrixType
MatrixType::transpose (void) const
{
  MatrixType retval (*this);
  if (m_type == MatrixType::Upper)
    retval.m_type = MatrixType::Lower;
  else if (m_type == MatrixType::Permuted_Upper)
    retval.m_type = MatrixType::Permuted_Lower;
  else if (m_type == MatrixType::Lower)
    retval.m_type = MatrixType::Upper;
  else if (m_type == MatrixType::Permuted_Lower)
    retval.m_type = MatrixType::Permuted_Upper;
  else if (m_type == MatrixType::Banded)
    {
      retval.m_upper_band = m_lower_band;
      retval.m_lower_band = m_upper_band;
    }

  return retval;
}

// Instantiate MatrixType template constructors that we need.

template MatrixType::MatrixType (const MSparse<double>&);
template MatrixType::MatrixType (const MSparse<Complex>&);