view liboctave/numeric/fEIG.cc @ 31605:e88a07dec498 stable

maint: Use macros to begin/end C++ namespaces. * oct-conf-post-public.in.h: Define two macros (OCTAVE_BEGIN_NAMESPACE, OCTAVE_END_NAMESPACE) that can be used to start/end a namespace. * mk-opts.pl, build-env.h, build-env.in.cc, __betainc__.cc, __contourc__.cc, __dsearchn__.cc, __eigs__.cc, __expint__.cc, __ftp__.cc, __gammainc__.cc, __ichol__.cc, __ilu__.cc, __isprimelarge__.cc, __lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, amd.cc, auto-shlib.cc, auto-shlib.h, balance.cc, base-text-renderer.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, ccolamd.cc, cellfun.cc, chol.cc, colamd.cc, colloc.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, data.h, debug.cc, defaults.cc, defaults.h, defun-int.h, defun.cc, det.cc, dirfns.cc, display.cc, display.h, dlmread.cc, dmperm.cc, dot.cc, dynamic-ld.cc, dynamic-ld.h, eig.cc, ellipj.cc, environment.cc, environment.h, error.cc, error.h, errwarn.h, event-manager.cc, event-manager.h, event-queue.cc, event-queue.h, fcn-info.cc, fcn-info.h, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics-toolkit.cc, graphics-toolkit.h, graphics.cc, graphics.in.h, gsvd.cc, gtk-manager.cc, gtk-manager.h, hash.cc, help.cc, help.h, hess.cc, hex2num.cc, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter-private.cc, interpreter-private.h, interpreter.cc, interpreter.h, inv.cc, jsondecode.cc, jsonencode.cc, kron.cc, latex-text-renderer.cc, latex-text-renderer.h, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-ascii-helper.cc, ls-ascii-helper.h, ls-oct-text.cc, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mex-private.h, mex.cc, mgorth.cc, nproc.cc, oct-fstrm.cc, oct-fstrm.h, oct-hdf5-types.cc, oct-hdf5-types.h, oct-hist.cc, oct-hist.h, oct-iostrm.cc, oct-iostrm.h, oct-opengl.h, oct-prcstrm.cc, oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-process.cc, oct-process.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct-tex-lexer.in.ll, oct-tex-parser.yy, ordqz.cc, ordschur.cc, pager.cc, pager.h, pinv.cc, pow2.cc, pr-flt-fmt.cc, pr-output.cc, procstream.cc, procstream.h, psi.cc, qr.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, settings.cc, settings.h, sighandlers.cc, sighandlers.h, sparse-xdiv.cc, sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, sparse.cc, spparms.cc, sqrtm.cc, stack-frame.cc, stack-frame.h, stream-euler.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symbfact.cc, syminfo.cc, syminfo.h, symrcm.cc, symrec.cc, symrec.h, symscope.cc, symscope.h, symtab.cc, symtab.h, syscalls.cc, sysdep.cc, sysdep.h, text-engine.cc, text-engine.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, url-handle-manager.cc, url-handle-manager.h, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, xdiv.cc, xdiv.h, xnorm.cc, xnorm.h, xpow.cc, xpow.h, __delaunayn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __ode15__.cc, __voronoi__.cc, audiodevinfo.cc, audioread.cc, convhulln.cc, fftw.cc, gzip.cc, mk-build-env-features.sh, mk-builtins.pl, cdef-class.cc, cdef-class.h, cdef-fwd.h, cdef-manager.cc, cdef-manager.h, cdef-method.cc, cdef-method.h, cdef-object.cc, cdef-object.h, cdef-package.cc, cdef-package.h, cdef-property.cc, cdef-property.h, cdef-utils.cc, cdef-utils.h, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-builtin.h, ov-cell.cc, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn.h, ov-java.cc, ov-java.h, ov-mex-fcn.h, ov-null-mat.cc, ov-oncleanup.cc, ov-struct.cc, ov-typeinfo.cc, ov-typeinfo.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, octave.cc, octave.h, mk-ops.sh, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-mi.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, anon-fcn-validator.cc, anon-fcn-validator.h, bp-table.cc, bp-table.h, comment-list.cc, comment-list.h, filepos.h, lex.h, lex.ll, oct-lvalue.cc, oct-lvalue.h, oct-parse.yy, parse.h, profiler.cc, profiler.h, pt-anon-scopes.cc, pt-anon-scopes.h, pt-arg-list.cc, pt-arg-list.h, pt-args-block.cc, pt-args-block.h, pt-array-list.cc, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-spmd.cc, pt-spmd.h, pt-stmt.cc, pt-stmt.h, pt-tm-const.cc, pt-tm-const.h, pt-unop.cc, pt-unop.h, pt-vm-eval.cc, pt-walk.cc, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Range.cc, Range.h, idx-vector.cc, idx-vector.h, range-fwd.h, CollocWt.cc, CollocWt.h, aepbalance.cc, aepbalance.h, chol.cc, chol.h, gepbalance.cc, gepbalance.h, gsvd.cc, gsvd.h, hess.cc, hess.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, lu.cc, lu.h, oct-convn.cc, oct-convn.h, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-norm.h, oct-rand.cc, oct-rand.h, oct-spparms.cc, oct-spparms.h, qr.cc, qr.h, qrp.cc, qrp.h, randgamma.cc, randgamma.h, randmtzig.cc, randmtzig.h, randpoisson.cc, randpoisson.h, schur.cc, schur.h, sparse-chol.cc, sparse-chol.h, sparse-lu.cc, sparse-lu.h, sparse-qr.cc, sparse-qr.h, svd.cc, svd.h, child-list.cc, child-list.h, dir-ops.cc, dir-ops.h, file-ops.cc, file-ops.h, file-stat.cc, file-stat.h, lo-sysdep.cc, lo-sysdep.h, lo-sysinfo.cc, lo-sysinfo.h, mach-info.cc, mach-info.h, oct-env.cc, oct-env.h, oct-group.cc, oct-group.h, oct-password.cc, oct-password.h, oct-syscalls.cc, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.cc, oct-uname.h, action-container.cc, action-container.h, base-list.h, cmd-edit.cc, cmd-edit.h, cmd-hist.cc, cmd-hist.h, f77-fcn.h, file-info.cc, file-info.h, lo-array-errwarn.cc, lo-array-errwarn.h, lo-hash.cc, lo-hash.h, lo-ieee.h, lo-regexp.cc, lo-regexp.h, lo-utils.cc, lo-utils.h, oct-base64.cc, oct-base64.h, oct-glob.cc, oct-glob.h, oct-inttypes.h, oct-mutex.cc, oct-mutex.h, oct-refcount.h, oct-shlib.cc, oct-shlib.h, oct-sparse.cc, oct-sparse.h, oct-string.h, octave-preserve-stream-state.h, pathsearch.cc, pathsearch.h, quit.cc, quit.h, unwind-prot.cc, unwind-prot.h, url-transfer.cc, url-transfer.h : Use new macros to begin/end C++ namespaces.
author Rik <rik@octave.org>
date Thu, 01 Dec 2022 14:23:45 -0800
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1994-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "Array.h"
#include "fEIG.h"
#include "fColVector.h"
#include "fMatrix.h"
#include "lo-error.h"
#include "lo-lapack-proto.h"

octave_idx_type
FloatEIG::init (const FloatMatrix& a, bool calc_rev, bool calc_lev,
                bool balance)
{
  if (a.any_element_is_inf_or_nan ())
    (*current_liboctave_error_handler)
      ("EIG: matrix contains Inf or NaN values");

  if (a.issymmetric ())
    return symmetric_init (a, calc_rev, calc_lev);

  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (n != a_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  F77_INT info = 0;

  FloatMatrix atmp = a;
  float *tmp_data = atmp.fortran_vec ();

  Array<float> wr (dim_vector (n, 1));
  float *pwr = wr.fortran_vec ();

  Array<float> wi (dim_vector (n, 1));
  float *pwi = wi.fortran_vec ();

  volatile F77_INT nvr = (calc_rev ? n : 0);
  FloatMatrix vr (nvr, nvr);
  float *pvr = vr.fortran_vec ();

  volatile F77_INT nvl = (calc_lev ? n : 0);
  FloatMatrix vl (nvl, nvl);
  float *pvl = vl.fortran_vec ();

  F77_INT lwork = -1;
  float dummy_work;

  F77_INT ilo;
  F77_INT ihi;

  Array<float> scale (dim_vector (n, 1));
  float *pscale = scale.fortran_vec ();

  float abnrm;

  Array<float> rconde (dim_vector (n, 1));
  float *prconde = rconde.fortran_vec ();

  Array<float> rcondv (dim_vector (n, 1));
  float *prcondv = rcondv.fortran_vec ();

  F77_INT dummy_iwork;

  F77_XFCN (sgeevx, SGEEVX, (F77_CONST_CHAR_ARG2 (balance ? "B" : "N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             n, tmp_data, n, pwr, pwi,
                             pvl, n, pvr, n,
                             ilo, ihi, pscale, abnrm, prconde, prcondv,
                             &dummy_work, lwork, &dummy_iwork, info
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("sgeevx workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work);
  Array<float> work (dim_vector (lwork, 1));
  float *pwork = work.fortran_vec ();

  F77_XFCN (sgeevx, SGEEVX, (F77_CONST_CHAR_ARG2 (balance ? "B" : "N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             n, tmp_data, n, pwr, pwi,
                             pvl, n, pvr, n,
                             ilo, ihi, pscale, abnrm, prconde, prcondv,
                             pwork, lwork, &dummy_iwork, info
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in sgeevx");

  if (info > 0)
    (*current_liboctave_error_handler) ("sgeevx failed to converge");

  m_lambda.resize (n);
  m_v.resize (nvr, nvr);
  m_w.resize (nvl, nvl);

  for (F77_INT j = 0; j < n; j++)
    {
      if (wi.elem (j) == 0.0)
        {
          m_lambda.elem (j) = FloatComplex (wr.elem (j));
          for (octave_idx_type i = 0; i < nvr; i++)
            m_v.elem (i, j) = vr.elem (i, j);

          for (F77_INT i = 0; i < nvl; i++)
            m_w.elem (i, j) = vl.elem (i, j);
        }
      else
        {
          if (j+1 >= n)
            (*current_liboctave_error_handler) ("EIG: internal error");

          m_lambda.elem (j) = FloatComplex (wr.elem (j), wi.elem (j));
          m_lambda.elem (j+1) = FloatComplex (wr.elem (j+1), wi.elem (j+1));

          for (F77_INT i = 0; i < nvr; i++)
            {
              float real_part = vr.elem (i, j);
              float imag_part = vr.elem (i, j+1);
              m_v.elem (i, j) = FloatComplex (real_part, imag_part);
              m_v.elem (i, j+1) = FloatComplex (real_part, -imag_part);
            }
          for (F77_INT i = 0; i < nvl; i++)
            {
              float real_part = vl.elem (i, j);
              float imag_part = vl.elem (i, j+1);
              m_w.elem (i, j) = FloatComplex (real_part, imag_part);
              m_w.elem (i, j+1) = FloatComplex (real_part, -imag_part);
            }
          j++;
        }
    }

  return info;
}

octave_idx_type
FloatEIG::symmetric_init (const FloatMatrix& a, bool calc_rev, bool calc_lev)
{
  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (n != a_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  F77_INT info = 0;

  FloatMatrix atmp = a;
  float *tmp_data = atmp.fortran_vec ();

  FloatColumnVector wr (n);
  float *pwr = wr.fortran_vec ();

  F77_INT lwork = -1;
  float dummy_work;

  F77_XFCN (ssyev, SSYEV, (F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, tmp_data, n, pwr, &dummy_work, lwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("ssyev workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work);
  Array<float> work (dim_vector (lwork, 1));
  float *pwork = work.fortran_vec ();

  F77_XFCN (ssyev, SSYEV, (F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, tmp_data, n, pwr, pwork, lwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in ssyev");

  if (info > 0)
    (*current_liboctave_error_handler) ("ssyev failed to converge");

  m_lambda = FloatComplexColumnVector (wr);
  m_v = (calc_rev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());
  m_w = (calc_lev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());

  return info;
}

octave_idx_type
FloatEIG::init (const FloatComplexMatrix& a, bool calc_rev, bool calc_lev,
                bool balance)
{
  if (a.any_element_is_inf_or_nan ())
    (*current_liboctave_error_handler)
      ("EIG: matrix contains Inf or NaN values");

  if (a.ishermitian ())
    return hermitian_init (a, calc_rev, calc_lev);

  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (n != a_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  F77_INT info = 0;

  FloatComplexMatrix atmp = a;
  FloatComplex *tmp_data = atmp.fortran_vec ();

  FloatComplexColumnVector wr (n);
  FloatComplex *pw = wr.fortran_vec ();

  F77_INT nvr = (calc_rev ? n : 0);
  FloatComplexMatrix vrtmp (nvr, nvr);
  FloatComplex *pvr = vrtmp.fortran_vec ();

  F77_INT nvl = (calc_lev ? n : 0);
  FloatComplexMatrix vltmp (nvl, nvl);
  FloatComplex *pvl = vltmp.fortran_vec ();

  F77_INT lwork = -1;
  FloatComplex dummy_work;

  F77_INT lrwork = 2*n;
  Array<float> rwork (dim_vector (lrwork, 1));
  float *prwork = rwork.fortran_vec ();

  F77_INT ilo;
  F77_INT ihi;

  Array<float> scale (dim_vector (n, 1));
  float *pscale = scale.fortran_vec ();

  float abnrm;

  Array<float> rconde (dim_vector (n, 1));
  float *prconde = rconde.fortran_vec ();

  Array<float> rcondv (dim_vector (n, 1));
  float *prcondv = rcondv.fortran_vec ();

  F77_XFCN (cgeevx, CGEEVX, (F77_CONST_CHAR_ARG2 (balance ? "B" : "N", 1),
                             F77_CONST_CHAR_ARG2 (calc_lev ? "V" : "N", 1),
                             F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             n, F77_CMPLX_ARG (tmp_data), n, F77_CMPLX_ARG (pw),
                             F77_CMPLX_ARG (pvl), n, F77_CMPLX_ARG (pvr), n,
                             ilo, ihi, pscale, abnrm, prconde, prcondv,
                             F77_CMPLX_ARG (&dummy_work), lwork, prwork, info
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("cgeevx workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work.real ());
  Array<FloatComplex> work (dim_vector (lwork, 1));
  FloatComplex *pwork = work.fortran_vec ();

  F77_XFCN (cgeevx, CGEEVX, (F77_CONST_CHAR_ARG2 (balance ? "B" : "N", 1),
                             F77_CONST_CHAR_ARG2 (calc_lev ? "V" : "N", 1),
                             F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             n, F77_CMPLX_ARG (tmp_data), n, F77_CMPLX_ARG (pw),
                             F77_CMPLX_ARG (pvl), n, F77_CMPLX_ARG (pvr), n,
                             ilo, ihi, pscale, abnrm, prconde, prcondv,
                             F77_CMPLX_ARG (pwork), lwork, prwork, info
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in cgeevx");

  if (info > 0)
    (*current_liboctave_error_handler) ("cgeevx failed to converge");

  m_lambda = wr;
  m_v = vrtmp;
  m_w = vltmp;

  return info;
}

octave_idx_type
FloatEIG::hermitian_init (const FloatComplexMatrix& a, bool calc_rev,
                          bool calc_lev)
{
  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (n != a_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  F77_INT info = 0;

  FloatComplexMatrix atmp = a;
  FloatComplex *tmp_data = atmp.fortran_vec ();

  FloatColumnVector wr (n);
  float *pwr = wr.fortran_vec ();

  F77_INT lwork = -1;
  FloatComplex dummy_work;

  F77_INT lrwork = 3*n;
  Array<float> rwork (dim_vector (lrwork, 1));
  float *prwork = rwork.fortran_vec ();

  F77_XFCN (cheev, CHEEV, (F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, F77_CMPLX_ARG (tmp_data), n, pwr,
                           F77_CMPLX_ARG (&dummy_work), lwork,
                           prwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("cheev workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work.real ());
  Array<FloatComplex> work (dim_vector (lwork, 1));
  FloatComplex *pwork = work.fortran_vec ();

  F77_XFCN (cheev, CHEEV, (F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, F77_CMPLX_ARG (tmp_data), n, pwr,
                           F77_CMPLX_ARG (pwork), lwork, prwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in cheev");

  if (info > 0)
    (*current_liboctave_error_handler) ("cheev failed to converge");

  m_lambda = FloatComplexColumnVector (wr);
  m_v = (calc_rev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());
  m_w = (calc_lev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());

  return info;
}

octave_idx_type
FloatEIG::init (const FloatMatrix& a, const FloatMatrix& b, bool calc_rev,
                bool calc_lev, bool force_qz)
{
  if (a.any_element_is_inf_or_nan () || b.any_element_is_inf_or_nan ())
    (*current_liboctave_error_handler)
      ("EIG: matrix contains Inf or NaN values");

  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT nb = octave::to_f77_int (b.rows ());

  F77_INT a_nc = octave::to_f77_int (a.cols ());
  F77_INT b_nc = octave::to_f77_int (b.cols ());

  if (n != a_nc || nb != b_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  if (n != nb)
    (*current_liboctave_error_handler) ("EIG requires same size matrices");

  F77_INT info = 0;

  FloatMatrix tmp = b;
  float *tmp_data = tmp.fortran_vec ();
  if (! force_qz)
    {
      F77_XFCN (spotrf, SPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1),
                                 n, tmp_data, n,
                                 info
                                 F77_CHAR_ARG_LEN (1)));

      if (a.issymmetric () && b.issymmetric () && info == 0)
        return symmetric_init (a, b, calc_rev, calc_lev);
    }

  FloatMatrix atmp = a;
  float *atmp_data = atmp.fortran_vec ();

  FloatMatrix btmp = b;
  float *btmp_data = btmp.fortran_vec ();

  Array<float> ar (dim_vector (n, 1));
  float *par = ar.fortran_vec ();

  Array<float> ai (dim_vector (n, 1));
  float *pai = ai.fortran_vec ();

  Array<float> beta (dim_vector (n, 1));
  float *pbeta = beta.fortran_vec ();

  volatile F77_INT nvr = (calc_rev ? n : 0);
  FloatMatrix vr (nvr, nvr);
  float *pvr = vr.fortran_vec ();

  volatile F77_INT nvl = (calc_lev ? n : 0);
  FloatMatrix vl (nvl, nvl);
  float *pvl = vl.fortran_vec ();

  F77_INT lwork = -1;
  float dummy_work;

  F77_XFCN (sggev, SGGEV, (F77_CONST_CHAR_ARG2 (calc_lev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           n, atmp_data, n, btmp_data, n,
                           par, pai, pbeta,
                           pvl, n, pvr, n,
                           &dummy_work, lwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("sggev workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work);
  Array<float> work (dim_vector (lwork, 1));
  float *pwork = work.fortran_vec ();

  F77_XFCN (sggev, SGGEV, (F77_CONST_CHAR_ARG2 (calc_lev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           n, atmp_data, n, btmp_data, n,
                           par, pai, pbeta,
                           pvl, n, pvr, n,
                           pwork, lwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in sggev");

  if (info > 0)
    (*current_liboctave_error_handler) ("sggev failed to converge");

  m_lambda.resize (n);
  m_v.resize (nvr, nvr);
  m_w.resize (nvl, nvl);


  for (F77_INT j = 0; j < n; j++)
    {
      if (ai.elem (j) == 0.0)
        {
          m_lambda.elem (j) = FloatComplex (ar.elem (j) / beta.elem (j));
          for (F77_INT i = 0; i < nvr; i++)
            m_v.elem (i, j) = vr.elem (i, j);

          for (F77_INT i = 0; i < nvl; i++)
            m_w.elem (i, j) = vl.elem (i, j);
        }
      else
        {
          if (j+1 >= n)
            (*current_liboctave_error_handler) ("EIG: internal error");

          m_lambda.elem (j) = FloatComplex (ar.elem (j) / beta.elem (j),
                                            ai.elem (j) / beta.elem (j));
          m_lambda.elem (j+1) = FloatComplex (ar.elem (j+1) / beta.elem (j+1),
                                              ai.elem (j+1) / beta.elem (j+1));

          for (F77_INT i = 0; i < nvr; i++)
            {
              float real_part = vr.elem (i, j);
              float imag_part = vr.elem (i, j+1);
              m_v.elem (i, j) = FloatComplex (real_part, imag_part);
              m_v.elem (i, j+1) = FloatComplex (real_part, -imag_part);
            }
          for (F77_INT i = 0; i < nvl; i++)
            {
              float real_part = vl.elem (i, j);
              float imag_part = vl.elem (i, j+1);
              m_w.elem (i, j) = FloatComplex (real_part, imag_part);
              m_w.elem (i, j+1) = FloatComplex (real_part, -imag_part);
            }
          j++;
        }
    }

  return info;
}

octave_idx_type
FloatEIG::symmetric_init (const FloatMatrix& a, const FloatMatrix& b,
                          bool calc_rev, bool calc_lev)
{
  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT nb = octave::to_f77_int (b.rows ());

  F77_INT a_nc = octave::to_f77_int (a.cols ());
  F77_INT b_nc = octave::to_f77_int (b.cols ());

  if (n != a_nc || nb != b_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  if (n != nb)
    (*current_liboctave_error_handler) ("EIG requires same size matrices");

  F77_INT info = 0;

  FloatMatrix atmp = a;
  float *atmp_data = atmp.fortran_vec ();

  FloatMatrix btmp = b;
  float *btmp_data = btmp.fortran_vec ();

  FloatColumnVector wr (n);
  float *pwr = wr.fortran_vec ();

  F77_INT lwork = -1;
  float dummy_work;

  F77_XFCN (ssygv, SSYGV, (1, F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, atmp_data, n,
                           btmp_data, n,
                           pwr, &dummy_work, lwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("ssygv workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work);
  Array<float> work (dim_vector (lwork, 1));
  float *pwork = work.fortran_vec ();

  F77_XFCN (ssygv, SSYGV, (1, F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, atmp_data, n,
                           btmp_data, n,
                           pwr, pwork, lwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in ssygv");

  if (info > 0)
    (*current_liboctave_error_handler) ("ssygv failed to converge");

  m_lambda = FloatComplexColumnVector (wr);
  m_v = (calc_rev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());
  m_w = (calc_lev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());

  return info;
}

octave_idx_type
FloatEIG::init (const FloatComplexMatrix& a, const FloatComplexMatrix& b,
                bool calc_rev, bool calc_lev, bool force_qz)
{
  if (a.any_element_is_inf_or_nan () || b.any_element_is_inf_or_nan ())
    (*current_liboctave_error_handler)
      ("EIG: matrix contains Inf or NaN values");

  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT nb = octave::to_f77_int (b.rows ());

  F77_INT a_nc = octave::to_f77_int (a.cols ());
  F77_INT b_nc = octave::to_f77_int (b.cols ());

  if (n != a_nc || nb != b_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  if (n != nb)
    (*current_liboctave_error_handler) ("EIG requires same size matrices");

  F77_INT info = 0;

  FloatComplexMatrix tmp = b;
  FloatComplex *tmp_data = tmp.fortran_vec ();

  if (! force_qz)
    {
      F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1),
                                 n, F77_CMPLX_ARG (tmp_data), n,
                                 info
                                 F77_CHAR_ARG_LEN (1)));

      if (a.ishermitian () && b.ishermitian () && info == 0)
        return hermitian_init (a, b, calc_rev, calc_lev);
    }

  FloatComplexMatrix atmp = a;
  FloatComplex *atmp_data = atmp.fortran_vec ();

  FloatComplexMatrix btmp = b;
  FloatComplex *btmp_data = btmp.fortran_vec ();

  FloatComplexColumnVector alpha (n);
  FloatComplex *palpha = alpha.fortran_vec ();

  FloatComplexColumnVector beta (n);
  FloatComplex *pbeta = beta.fortran_vec ();

  F77_INT nvr = (calc_rev ? n : 0);
  FloatComplexMatrix vrtmp (nvr, nvr);
  FloatComplex *pvr = vrtmp.fortran_vec ();

  F77_INT nvl = (calc_lev ? n : 0);
  FloatComplexMatrix vltmp (nvl, nvl);
  FloatComplex *pvl = vltmp.fortran_vec ();

  F77_INT lwork = -1;
  FloatComplex dummy_work;

  F77_INT lrwork = 8*n;
  Array<float> rwork (dim_vector (lrwork, 1));
  float *prwork = rwork.fortran_vec ();

  F77_XFCN (cggev, CGGEV, (F77_CONST_CHAR_ARG2 (calc_lev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           n, F77_CMPLX_ARG (atmp_data), n,
                           F77_CMPLX_ARG (btmp_data), n,
                           F77_CMPLX_ARG (palpha), F77_CMPLX_ARG (pbeta),
                           F77_CMPLX_ARG (pvl), n, F77_CMPLX_ARG (pvr), n,
                           F77_CMPLX_ARG (&dummy_work), lwork, prwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("cggev workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work.real ());
  Array<FloatComplex> work (dim_vector (lwork, 1));
  FloatComplex *pwork = work.fortran_vec ();

  F77_XFCN (cggev, CGGEV, (F77_CONST_CHAR_ARG2 (calc_lev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           n, F77_CMPLX_ARG (atmp_data), n,
                           F77_CMPLX_ARG (btmp_data), n,
                           F77_CMPLX_ARG (palpha), F77_CMPLX_ARG (pbeta),
                           F77_CMPLX_ARG (pvl), n, F77_CMPLX_ARG (pvr), n,
                           F77_CMPLX_ARG (pwork), lwork, prwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in cggev");

  if (info > 0)
    (*current_liboctave_error_handler) ("cggev failed to converge");

  m_lambda.resize (n);

  for (F77_INT j = 0; j < n; j++)
    m_lambda.elem (j) = alpha.elem (j) / beta.elem (j);

  m_v = vrtmp;
  m_w = vltmp;

  return info;
}

octave_idx_type
FloatEIG::hermitian_init (const FloatComplexMatrix& a,
                          const FloatComplexMatrix& b,
                          bool calc_rev, bool calc_lev)
{
  F77_INT n = octave::to_f77_int (a.rows ());
  F77_INT nb = octave::to_f77_int (b.rows ());

  F77_INT a_nc = octave::to_f77_int (a.cols ());
  F77_INT b_nc = octave::to_f77_int (b.cols ());

  if (n != a_nc || nb != b_nc)
    (*current_liboctave_error_handler) ("EIG requires square matrix");

  if (n != nb)
    (*current_liboctave_error_handler) ("EIG requires same size matrices");

  F77_INT info = 0;

  FloatComplexMatrix atmp = a;
  FloatComplex *atmp_data = atmp.fortran_vec ();

  FloatComplexMatrix btmp = b;
  FloatComplex *btmp_data = btmp.fortran_vec ();

  FloatColumnVector wr (n);
  float *pwr = wr.fortran_vec ();

  F77_INT lwork = -1;
  FloatComplex dummy_work;

  F77_INT lrwork = 3*n;
  Array<float> rwork (dim_vector (lrwork, 1));
  float *prwork = rwork.fortran_vec ();

  F77_XFCN (chegv, CHEGV, (1, F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, F77_CMPLX_ARG (atmp_data), n,
                           F77_CMPLX_ARG (btmp_data), n,
                           pwr, F77_CMPLX_ARG (&dummy_work), lwork,
                           prwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info != 0)
    (*current_liboctave_error_handler) ("zhegv workspace query failed");

  lwork = static_cast<F77_INT> (dummy_work.real ());
  Array<FloatComplex> work (dim_vector (lwork, 1));
  FloatComplex *pwork = work.fortran_vec ();

  F77_XFCN (chegv, CHEGV, (1, F77_CONST_CHAR_ARG2 (calc_rev ? "V" : "N", 1),
                           F77_CONST_CHAR_ARG2 ("U", 1),
                           n, F77_CMPLX_ARG (atmp_data), n,
                           F77_CMPLX_ARG (btmp_data), n,
                           pwr, F77_CMPLX_ARG (pwork), lwork, prwork, info
                           F77_CHAR_ARG_LEN (1)
                           F77_CHAR_ARG_LEN (1)));

  if (info < 0)
    (*current_liboctave_error_handler) ("unrecoverable error in zhegv");

  if (info > 0)
    (*current_liboctave_error_handler) ("zhegv failed to converge");

  m_lambda = FloatComplexColumnVector (wr);
  m_v = (calc_rev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());
  m_w = (calc_lev ? FloatComplexMatrix (atmp) : FloatComplexMatrix ());

  return info;
}