view liboctave/numeric/sparse-lu.cc @ 31605:e88a07dec498 stable

maint: Use macros to begin/end C++ namespaces. * oct-conf-post-public.in.h: Define two macros (OCTAVE_BEGIN_NAMESPACE, OCTAVE_END_NAMESPACE) that can be used to start/end a namespace. * mk-opts.pl, build-env.h, build-env.in.cc, __betainc__.cc, __contourc__.cc, __dsearchn__.cc, __eigs__.cc, __expint__.cc, __ftp__.cc, __gammainc__.cc, __ichol__.cc, __ilu__.cc, __isprimelarge__.cc, __lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, amd.cc, auto-shlib.cc, auto-shlib.h, balance.cc, base-text-renderer.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, ccolamd.cc, cellfun.cc, chol.cc, colamd.cc, colloc.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, data.h, debug.cc, defaults.cc, defaults.h, defun-int.h, defun.cc, det.cc, dirfns.cc, display.cc, display.h, dlmread.cc, dmperm.cc, dot.cc, dynamic-ld.cc, dynamic-ld.h, eig.cc, ellipj.cc, environment.cc, environment.h, error.cc, error.h, errwarn.h, event-manager.cc, event-manager.h, event-queue.cc, event-queue.h, fcn-info.cc, fcn-info.h, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics-toolkit.cc, graphics-toolkit.h, graphics.cc, graphics.in.h, gsvd.cc, gtk-manager.cc, gtk-manager.h, hash.cc, help.cc, help.h, hess.cc, hex2num.cc, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter-private.cc, interpreter-private.h, interpreter.cc, interpreter.h, inv.cc, jsondecode.cc, jsonencode.cc, kron.cc, latex-text-renderer.cc, latex-text-renderer.h, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-ascii-helper.cc, ls-ascii-helper.h, ls-oct-text.cc, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mex-private.h, mex.cc, mgorth.cc, nproc.cc, oct-fstrm.cc, oct-fstrm.h, oct-hdf5-types.cc, oct-hdf5-types.h, oct-hist.cc, oct-hist.h, oct-iostrm.cc, oct-iostrm.h, oct-opengl.h, oct-prcstrm.cc, oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-process.cc, oct-process.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct-tex-lexer.in.ll, oct-tex-parser.yy, ordqz.cc, ordschur.cc, pager.cc, pager.h, pinv.cc, pow2.cc, pr-flt-fmt.cc, pr-output.cc, procstream.cc, procstream.h, psi.cc, qr.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, settings.cc, settings.h, sighandlers.cc, sighandlers.h, sparse-xdiv.cc, sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, sparse.cc, spparms.cc, sqrtm.cc, stack-frame.cc, stack-frame.h, stream-euler.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symbfact.cc, syminfo.cc, syminfo.h, symrcm.cc, symrec.cc, symrec.h, symscope.cc, symscope.h, symtab.cc, symtab.h, syscalls.cc, sysdep.cc, sysdep.h, text-engine.cc, text-engine.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, url-handle-manager.cc, url-handle-manager.h, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, xdiv.cc, xdiv.h, xnorm.cc, xnorm.h, xpow.cc, xpow.h, __delaunayn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __ode15__.cc, __voronoi__.cc, audiodevinfo.cc, audioread.cc, convhulln.cc, fftw.cc, gzip.cc, mk-build-env-features.sh, mk-builtins.pl, cdef-class.cc, cdef-class.h, cdef-fwd.h, cdef-manager.cc, cdef-manager.h, cdef-method.cc, cdef-method.h, cdef-object.cc, cdef-object.h, cdef-package.cc, cdef-package.h, cdef-property.cc, cdef-property.h, cdef-utils.cc, cdef-utils.h, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-builtin.h, ov-cell.cc, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn.h, ov-java.cc, ov-java.h, ov-mex-fcn.h, ov-null-mat.cc, ov-oncleanup.cc, ov-struct.cc, ov-typeinfo.cc, ov-typeinfo.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, octave.cc, octave.h, mk-ops.sh, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-mi.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, anon-fcn-validator.cc, anon-fcn-validator.h, bp-table.cc, bp-table.h, comment-list.cc, comment-list.h, filepos.h, lex.h, lex.ll, oct-lvalue.cc, oct-lvalue.h, oct-parse.yy, parse.h, profiler.cc, profiler.h, pt-anon-scopes.cc, pt-anon-scopes.h, pt-arg-list.cc, pt-arg-list.h, pt-args-block.cc, pt-args-block.h, pt-array-list.cc, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-spmd.cc, pt-spmd.h, pt-stmt.cc, pt-stmt.h, pt-tm-const.cc, pt-tm-const.h, pt-unop.cc, pt-unop.h, pt-vm-eval.cc, pt-walk.cc, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Range.cc, Range.h, idx-vector.cc, idx-vector.h, range-fwd.h, CollocWt.cc, CollocWt.h, aepbalance.cc, aepbalance.h, chol.cc, chol.h, gepbalance.cc, gepbalance.h, gsvd.cc, gsvd.h, hess.cc, hess.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, lu.cc, lu.h, oct-convn.cc, oct-convn.h, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-norm.h, oct-rand.cc, oct-rand.h, oct-spparms.cc, oct-spparms.h, qr.cc, qr.h, qrp.cc, qrp.h, randgamma.cc, randgamma.h, randmtzig.cc, randmtzig.h, randpoisson.cc, randpoisson.h, schur.cc, schur.h, sparse-chol.cc, sparse-chol.h, sparse-lu.cc, sparse-lu.h, sparse-qr.cc, sparse-qr.h, svd.cc, svd.h, child-list.cc, child-list.h, dir-ops.cc, dir-ops.h, file-ops.cc, file-ops.h, file-stat.cc, file-stat.h, lo-sysdep.cc, lo-sysdep.h, lo-sysinfo.cc, lo-sysinfo.h, mach-info.cc, mach-info.h, oct-env.cc, oct-env.h, oct-group.cc, oct-group.h, oct-password.cc, oct-password.h, oct-syscalls.cc, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.cc, oct-uname.h, action-container.cc, action-container.h, base-list.h, cmd-edit.cc, cmd-edit.h, cmd-hist.cc, cmd-hist.h, f77-fcn.h, file-info.cc, file-info.h, lo-array-errwarn.cc, lo-array-errwarn.h, lo-hash.cc, lo-hash.h, lo-ieee.h, lo-regexp.cc, lo-regexp.h, lo-utils.cc, lo-utils.h, oct-base64.cc, oct-base64.h, oct-glob.cc, oct-glob.h, oct-inttypes.h, oct-mutex.cc, oct-mutex.h, oct-refcount.h, oct-shlib.cc, oct-shlib.h, oct-sparse.cc, oct-sparse.h, oct-string.h, octave-preserve-stream-state.h, pathsearch.cc, pathsearch.h, quit.cc, quit.h, unwind-prot.cc, unwind-prot.h, url-transfer.cc, url-transfer.h : Use new macros to begin/end C++ namespaces.
author Rik <rik@octave.org>
date Thu, 01 Dec 2022 14:23:45 -0800
parents 796f54d4ddbf
children aac27ad79be6
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1998-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "CSparse.h"
#include "PermMatrix.h"
#include "dSparse.h"
#include "lo-error.h"
#include "lo-mappers.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"
#include "oct-spparms.h"
#include "sparse-lu.h"

OCTAVE_BEGIN_NAMESPACE(octave)

OCTAVE_BEGIN_NAMESPACE(math)

    // Wrappers for SuiteSparse (formerly UMFPACK) functions that have
    // different names depending on the sparse matrix data type.
    //
    // All of these functions must be specialized to forward to the correct
    // SuiteSparse functions.

    template <typename T>
    void
    umfpack_defaults (double *Control);

    template <typename T>
    void
    umfpack_free_numeric (void **Numeric);

    template <typename T>
    void
    umfpack_free_symbolic (void **Symbolic);

    template <typename T>
    octave_idx_type
    umfpack_get_lunz (octave_idx_type *lnz, octave_idx_type *unz,
                      void *Numeric);

    template <typename T>
    octave_idx_type
    umfpack_get_numeric (octave_idx_type *Lp, octave_idx_type *Lj,
                         T *Lx, // Or Lz_packed
                         octave_idx_type *Up, octave_idx_type *Ui,
                         T *Ux, // Or Uz_packed
                         octave_idx_type *p, octave_idx_type *q,
                         double *Dz_packed, octave_idx_type *do_recip,
                         double *Rs, void *Numeric);

    template <typename T>
    octave_idx_type
    umfpack_numeric (const octave_idx_type *Ap, const octave_idx_type *Ai,
                     const T *Ax, // Or Az_packed
                     void *Symbolic, void **Numeric,
                     const double *Control, double *Info);

    template <typename T>
    octave_idx_type
    umfpack_qsymbolic (octave_idx_type n_row, octave_idx_type n_col,
                       const octave_idx_type *Ap, const octave_idx_type *Ai,
                       const T *Ax, // Or Az_packed
                       const octave_idx_type *Qinit, void **Symbolic,
                       const double *Control, double *Info);

    template <typename T>
    void
    umfpack_report_control (const double *Control);

    template <typename T>
    void
    umfpack_report_info (const double *Control, const double *Info);

    template <typename T>
    void
    umfpack_report_matrix (octave_idx_type n_row, octave_idx_type n_col,
                           const octave_idx_type *Ap,
                           const octave_idx_type *Ai,
                           const T *Ax, // Or Az_packed
                           octave_idx_type col_form, const double *Control);

    template <typename T>
    void
    umfpack_report_numeric (void *Numeric, const double *Control);

    template <typename T>
    void
    umfpack_report_perm (octave_idx_type np, const octave_idx_type *Perm,
                         const double *Control);

    template <typename T>
    void
    umfpack_report_status (double *Control, octave_idx_type status);

    template <typename T>
    void
    umfpack_report_symbolic (void *Symbolic, const double *Control);

#if defined (HAVE_UMFPACK)

    // SparseMatrix Specialization.

    template <>
    inline OCTAVE_API void
    umfpack_defaults<double> (double *Control)
    {
      UMFPACK_DNAME (defaults) (Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_free_numeric<double> (void **Numeric)
    {
      UMFPACK_DNAME (free_numeric) (Numeric);
    }

    template <>
    inline OCTAVE_API void
    umfpack_free_symbolic<double> (void **Symbolic)
    {
      UMFPACK_DNAME (free_symbolic) (Symbolic);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_get_lunz<double>
    (octave_idx_type *lnz, octave_idx_type *unz, void *Numeric)
    {
      suitesparse_integer ignore1, ignore2, ignore3;

      return UMFPACK_DNAME (get_lunz) (to_suitesparse_intptr (lnz),
                                       to_suitesparse_intptr (unz),
                                       &ignore1, &ignore2, &ignore3, Numeric);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_get_numeric<double>
    (octave_idx_type *Lp, octave_idx_type *Lj, double *Lx,
     octave_idx_type *Up, octave_idx_type *Ui, double *Ux,
     octave_idx_type *p, octave_idx_type *q, double *Dx,
     octave_idx_type *do_recip, double *Rs, void *Numeric)
    {
      return UMFPACK_DNAME (get_numeric) (to_suitesparse_intptr (Lp),
                                          to_suitesparse_intptr (Lj),
                                          Lx, to_suitesparse_intptr (Up),
                                          to_suitesparse_intptr (Ui), Ux,
                                          to_suitesparse_intptr (p),
                                          to_suitesparse_intptr (q), Dx,
                                          to_suitesparse_intptr (do_recip),
                                          Rs, Numeric);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_numeric<double>
    (const octave_idx_type *Ap, const octave_idx_type *Ai,
     const double *Ax, void *Symbolic, void **Numeric,
     const double *Control, double *Info)
    {
      return UMFPACK_DNAME (numeric) (to_suitesparse_intptr (Ap),
                                      to_suitesparse_intptr (Ai),
                                      Ax, Symbolic, Numeric, Control, Info);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_qsymbolic<double>
    (octave_idx_type n_row, octave_idx_type n_col, const octave_idx_type *Ap,
     const octave_idx_type *Ai, const double *Ax,
     const octave_idx_type *Qinit, void **Symbolic,
     const double *Control, double *Info)
    {
      return UMFPACK_DNAME (qsymbolic) (n_row, n_col,
                                        to_suitesparse_intptr (Ap),
                                        to_suitesparse_intptr (Ai), Ax,
                                        to_suitesparse_intptr (Qinit),
                                        Symbolic, Control, Info);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_control<double> (const double *Control)
    {
      UMFPACK_DNAME (report_control) (Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_info<double> (const double *Control, const double *Info)
    {
      UMFPACK_DNAME (report_info) (Control, Info);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_matrix<double>
    (octave_idx_type n_row, octave_idx_type n_col, const octave_idx_type *Ap,
     const octave_idx_type *Ai, const double *Ax, octave_idx_type col_form,
     const double *Control)
    {
      UMFPACK_DNAME (report_matrix) (n_row, n_col,
                                     to_suitesparse_intptr (Ap),
                                     to_suitesparse_intptr (Ai), Ax,
                                     col_form, Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_numeric<double> (void *Numeric, const double *Control)
    {
      UMFPACK_DNAME (report_numeric) (Numeric, Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_perm<double>
    (octave_idx_type np, const octave_idx_type *Perm, const double *Control)
    {
      UMFPACK_DNAME (report_perm) (np, to_suitesparse_intptr (Perm), Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_status<double> (double *Control, octave_idx_type status)
    {
      UMFPACK_DNAME (report_status) (Control, status);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_symbolic<double> (void *Symbolic, const double *Control)
    {
      UMFPACK_DNAME (report_symbolic) (Symbolic, Control);
    }

    // SparseComplexMatrix specialization.

    template <>
    inline OCTAVE_API void
    umfpack_defaults<Complex> (double *Control)
    {
      UMFPACK_ZNAME (defaults) (Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_free_numeric<Complex> (void **Numeric)
    {
      UMFPACK_ZNAME (free_numeric) (Numeric);
    }

    template <>
    inline OCTAVE_API void
    umfpack_free_symbolic<Complex> (void **Symbolic)
    {
      UMFPACK_ZNAME (free_symbolic) (Symbolic);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_get_lunz<Complex>
    (octave_idx_type *lnz, octave_idx_type *unz, void *Numeric)
    {
      suitesparse_integer ignore1, ignore2, ignore3;

      return UMFPACK_ZNAME (get_lunz) (to_suitesparse_intptr (lnz),
                                       to_suitesparse_intptr (unz),
                                       &ignore1, &ignore2, &ignore3, Numeric);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_get_numeric<Complex>
    (octave_idx_type *Lp, octave_idx_type *Lj, Complex *Lz,
     octave_idx_type *Up, octave_idx_type *Ui, Complex *Uz,
     octave_idx_type *p, octave_idx_type *q, double *Dz,
     octave_idx_type *do_recip, double *Rs, void *Numeric)
    {
      return UMFPACK_ZNAME (get_numeric) (to_suitesparse_intptr (Lp),
                                          to_suitesparse_intptr (Lj),
                                          reinterpret_cast<double *> (Lz),
                                          nullptr, to_suitesparse_intptr (Up),
                                          to_suitesparse_intptr (Ui),
                                          reinterpret_cast<double *> (Uz),
                                          nullptr, to_suitesparse_intptr (p),
                                          to_suitesparse_intptr (q),
                                          reinterpret_cast<double *> (Dz),
                                          nullptr, to_suitesparse_intptr (do_recip),
                                          Rs, Numeric);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_numeric<Complex>
    (const octave_idx_type *Ap, const octave_idx_type *Ai,
     const Complex *Az, void *Symbolic, void **Numeric,
     const double *Control, double *Info)
    {
      return UMFPACK_ZNAME (numeric) (to_suitesparse_intptr (Ap),
                                      to_suitesparse_intptr (Ai),
                                      reinterpret_cast<const double *> (Az),
                                      nullptr, Symbolic, Numeric, Control, Info);
    }

    template <>
    inline OCTAVE_API octave_idx_type
    umfpack_qsymbolic<Complex>
    (octave_idx_type n_row, octave_idx_type n_col,
     const octave_idx_type *Ap, const octave_idx_type *Ai,
     const Complex *Az, const octave_idx_type *Qinit,
     void **Symbolic, const double *Control, double *Info)
    {
      return UMFPACK_ZNAME (qsymbolic) (n_row, n_col,
                                        to_suitesparse_intptr (Ap),
                                        to_suitesparse_intptr (Ai),
                                        reinterpret_cast<const double *> (Az),
                                        nullptr, to_suitesparse_intptr (Qinit),
                                        Symbolic, Control, Info);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_control<Complex> (const double *Control)
    {
      UMFPACK_ZNAME (report_control) (Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_info<Complex> (const double *Control, const double *Info)
    {
      UMFPACK_ZNAME (report_info) (Control, Info);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_matrix<Complex>
    (octave_idx_type n_row, octave_idx_type n_col,
     const octave_idx_type *Ap, const octave_idx_type *Ai,
     const Complex *Az, octave_idx_type col_form, const double *Control)
    {
      UMFPACK_ZNAME (report_matrix) (n_row, n_col,
                                     to_suitesparse_intptr (Ap),
                                     to_suitesparse_intptr (Ai),
                                     reinterpret_cast<const double *> (Az),
                                     nullptr, col_form, Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_numeric<Complex> (void *Numeric, const double *Control)
    {
      UMFPACK_ZNAME (report_numeric) (Numeric, Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_perm<Complex>
    (octave_idx_type np, const octave_idx_type *Perm, const double *Control)
    {
      UMFPACK_ZNAME (report_perm) (np, to_suitesparse_intptr (Perm), Control);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_status<Complex> (double *Control, octave_idx_type status)
    {
      UMFPACK_ZNAME (report_status) (Control, status);
    }

    template <>
    inline OCTAVE_API void
    umfpack_report_symbolic <Complex> (void *Symbolic, const double *Control)
    {
      UMFPACK_ZNAME (report_symbolic) (Symbolic, Control);
    }

#endif

    template <typename lu_type>
    sparse_lu<lu_type>::sparse_lu (const lu_type& a, const Matrix& piv_thres,
                                   bool scale)
      : m_L (), m_U (), m_R (), m_cond (0), m_P (), m_Q ()
    {
#if defined (HAVE_UMFPACK)
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      // Setup the control parameters
      Matrix Control (UMFPACK_CONTROL, 1);
      double *control = Control.fortran_vec ();
      umfpack_defaults<lu_elt_type> (control);

      double tmp = sparse_params::get_key ("spumoni");
      if (! math::isnan (tmp))
        Control (UMFPACK_PRL) = tmp;

      if (piv_thres.numel () == 2)
        {
          tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0));
          if (! math::isnan (tmp))
            Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

          tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1));
          if (! math::isnan (tmp))
            Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
        }
      else
        {
          tmp = sparse_params::get_key ("piv_tol");
          if (! math::isnan (tmp))
            Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

          tmp = sparse_params::get_key ("sym_tol");
          if (! math::isnan (tmp))
            Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
        }

      // Set whether we are allowed to modify Q or not
      tmp = sparse_params::get_key ("autoamd");
      if (! math::isnan (tmp))
        Control (UMFPACK_FIXQ) = tmp;

      // Turn-off UMFPACK scaling for LU
      if (scale)
        Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM;
      else
        Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

      umfpack_report_control<lu_elt_type> (control);

      const octave_idx_type *Ap = a.cidx ();
      const octave_idx_type *Ai = a.ridx ();
      const lu_elt_type *Ax = a.data ();

      umfpack_report_matrix<lu_elt_type> (nr, nc, Ap, Ai, Ax,
                                          static_cast<octave_idx_type> (1),
                                          control);

      void *Symbolic;
      Matrix Info (1, UMFPACK_INFO);
      double *info = Info.fortran_vec ();
      int status = umfpack_qsymbolic<lu_elt_type> (nr, nc, Ap, Ai, Ax, nullptr,
                                                   &Symbolic, control, info);

      if (status < 0)
        {
          umfpack_report_status<lu_elt_type> (control, status);
          umfpack_report_info<lu_elt_type> (control, info);

          umfpack_free_symbolic<lu_elt_type> (&Symbolic);

          (*current_liboctave_error_handler)
            ("sparse_lu: symbolic factorization failed");
        }
      else
        {
          umfpack_report_symbolic<lu_elt_type> (Symbolic, control);

          void *Numeric;
          status = umfpack_numeric<lu_elt_type> (Ap, Ai, Ax, Symbolic,
                                                 &Numeric, control, info);
          umfpack_free_symbolic<lu_elt_type> (&Symbolic);

          m_cond = Info (UMFPACK_RCOND);

          if (status < 0)
            {
              umfpack_report_status<lu_elt_type> (control, status);
              umfpack_report_info<lu_elt_type> (control, info);

              umfpack_free_numeric<lu_elt_type> (&Numeric);

              (*current_liboctave_error_handler)
                ("sparse_lu: numeric factorization failed");
            }
          else
            {
              umfpack_report_numeric<lu_elt_type> (Numeric, control);

              octave_idx_type lnz, unz;
              status = umfpack_get_lunz<lu_elt_type> (&lnz, &unz, Numeric);

              if (status < 0)
                {
                  umfpack_report_status<lu_elt_type> (control, status);
                  umfpack_report_info<lu_elt_type> (control, info);

                  umfpack_free_numeric<lu_elt_type> (&Numeric);

                  (*current_liboctave_error_handler)
                    ("sparse_lu: extracting LU factors failed");
                }
              else
                {
                  octave_idx_type n_inner = (nr < nc ? nr : nc);

                  if (lnz < 1)
                    m_L = lu_type (n_inner, nr,
                                   static_cast<octave_idx_type> (1));
                  else
                    m_L = lu_type (n_inner, nr, lnz);

                  octave_idx_type *Ltp = m_L.cidx ();
                  octave_idx_type *Ltj = m_L.ridx ();
                  lu_elt_type *Ltx = m_L.data ();

                  if (unz < 1)
                    m_U = lu_type (n_inner, nc,
                                   static_cast<octave_idx_type> (1));
                  else
                    m_U = lu_type (n_inner, nc, unz);

                  octave_idx_type *Up = m_U.cidx ();
                  octave_idx_type *Uj = m_U.ridx ();
                  lu_elt_type *Ux = m_U.data ();

                  m_R = SparseMatrix (nr, nr, nr);
                  for (octave_idx_type i = 0; i < nr; i++)
                    {
                      m_R.xridx (i) = i;
                      m_R.xcidx (i) = i;
                    }
                  m_R.xcidx (nr) = nr;
                  double *Rx = m_R.data ();

                  m_P.resize (dim_vector (nr, 1));
                  octave_idx_type *p = m_P.fortran_vec ();

                  m_Q.resize (dim_vector (nc, 1));
                  octave_idx_type *q = m_Q.fortran_vec ();

                  octave_idx_type do_recip;
                  status = umfpack_get_numeric<lu_elt_type> (Ltp, Ltj, Ltx,
                                                             Up, Uj, Ux,
                                                             p, q, nullptr,
                                                             &do_recip, Rx,
                                                             Numeric);

                  umfpack_free_numeric<lu_elt_type> (&Numeric);

                  if (status < 0)
                    {
                      umfpack_report_status<lu_elt_type> (control, status);

                      (*current_liboctave_error_handler)
                        ("sparse_lu: extracting LU factors failed");
                    }
                  else
                    {
                      m_L = m_L.transpose ();

                      if (do_recip)
                        for (octave_idx_type i = 0; i < nr; i++)
                          Rx[i] = 1.0 / Rx[i];

                      umfpack_report_matrix<lu_elt_type> (nr, n_inner,
                                                          m_L.cidx (),
                                                          m_L.ridx (),
                                                          m_L.data (),
                                                          static_cast<octave_idx_type> (1),
                                                          control);
                      umfpack_report_matrix<lu_elt_type> (n_inner, nc,
                                                          m_U.cidx (),
                                                          m_U.ridx (),
                                                          m_U.data (),
                                                          static_cast<octave_idx_type> (1),
                                                          control);
                      umfpack_report_perm<lu_elt_type> (nr, p, control);
                      umfpack_report_perm<lu_elt_type> (nc, q, control);
                    }

                  umfpack_report_info<lu_elt_type> (control, info);
                }
            }
        }

#else

      octave_unused_parameter (a);
      octave_unused_parameter (piv_thres);
      octave_unused_parameter (scale);

      (*current_liboctave_error_handler)
        ("support for UMFPACK was unavailable or disabled when liboctave was built");

#endif
    }

    template <typename lu_type>
    sparse_lu<lu_type>::sparse_lu (const lu_type& a,
                                   const ColumnVector& Qinit,
                                   const Matrix& piv_thres, bool scale,
                                   bool FixedQ, double droptol,
                                   bool milu, bool udiag)
      : m_L (), m_U (), m_R (), m_cond (0), m_P (), m_Q ()
    {
#if defined (HAVE_UMFPACK)

      if (milu)
        (*current_liboctave_error_handler)
          ("Modified incomplete LU not implemented");

      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      // Setup the control parameters
      Matrix Control (UMFPACK_CONTROL, 1);
      double *control = Control.fortran_vec ();
      umfpack_defaults<lu_elt_type> (control);

      double tmp = sparse_params::get_key ("spumoni");
      if (! math::isnan (tmp))
        Control (UMFPACK_PRL) = tmp;

      if (piv_thres.numel () == 2)
        {
          tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0));
          if (! math::isnan (tmp))
            Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
          tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1));
          if (! math::isnan (tmp))
            Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
        }
      else
        {
          tmp = sparse_params::get_key ("piv_tol");
          if (! math::isnan (tmp))
            Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

          tmp = sparse_params::get_key ("sym_tol");
          if (! math::isnan (tmp))
            Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
        }

      if (droptol >= 0.)
        Control (UMFPACK_DROPTOL) = droptol;

      // Set whether we are allowed to modify Q or not
      if (FixedQ)
        Control (UMFPACK_FIXQ) = 1.0;
      else
        {
          tmp = sparse_params::get_key ("autoamd");
          if (! math::isnan (tmp))
            Control (UMFPACK_FIXQ) = tmp;
        }

      // Turn-off UMFPACK scaling for LU
      if (scale)
        Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM;
      else
        Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

      umfpack_report_control<lu_elt_type> (control);

      const octave_idx_type *Ap = a.cidx ();
      const octave_idx_type *Ai = a.ridx ();
      const lu_elt_type *Ax = a.data ();

      umfpack_report_matrix<lu_elt_type> (nr, nc, Ap, Ai, Ax,
                                          static_cast<octave_idx_type> (1),
                                          control);

      void *Symbolic;
      Matrix Info (1, UMFPACK_INFO);
      double *info = Info.fortran_vec ();
      int status;

      // Null loop so that qinit is immediately deallocated when not needed
      do
        {
          OCTAVE_LOCAL_BUFFER (octave_idx_type, qinit, nc);

          for (octave_idx_type i = 0; i < nc; i++)
            qinit[i] = static_cast<octave_idx_type> (Qinit (i));

          status = umfpack_qsymbolic<lu_elt_type> (nr, nc, Ap, Ai, Ax,
                                                   qinit, &Symbolic, control,
                                                   info);
        }
      while (0);

      if (status < 0)
        {
          umfpack_report_status<lu_elt_type> (control, status);
          umfpack_report_info<lu_elt_type> (control, info);

          umfpack_free_symbolic<lu_elt_type> (&Symbolic);

          (*current_liboctave_error_handler)
            ("sparse_lu: symbolic factorization failed");
        }
      else
        {
          umfpack_report_symbolic<lu_elt_type> (Symbolic, control);

          void *Numeric;
          status = umfpack_numeric<lu_elt_type> (Ap, Ai, Ax, Symbolic,
                                                 &Numeric, control, info);
          umfpack_free_symbolic<lu_elt_type> (&Symbolic);

          m_cond = Info (UMFPACK_RCOND);

          if (status < 0)
            {
              umfpack_report_status<lu_elt_type> (control, status);
              umfpack_report_info<lu_elt_type> (control, info);

              umfpack_free_numeric<lu_elt_type> (&Numeric);

              (*current_liboctave_error_handler)
                ("sparse_lu: numeric factorization failed");
            }
          else
            {
              umfpack_report_numeric<lu_elt_type> (Numeric, control);

              octave_idx_type lnz, unz;
              status = umfpack_get_lunz<lu_elt_type> (&lnz, &unz, Numeric);

              if (status < 0)
                {
                  umfpack_report_status<lu_elt_type> (control, status);
                  umfpack_report_info<lu_elt_type> (control, info);

                  umfpack_free_numeric<lu_elt_type> (&Numeric);

                  (*current_liboctave_error_handler)
                    ("sparse_lu: extracting LU factors failed");
                }
              else
                {
                  octave_idx_type n_inner = (nr < nc ? nr : nc);

                  if (lnz < 1)
                    m_L = lu_type (n_inner, nr,
                                   static_cast<octave_idx_type> (1));
                  else
                    m_L = lu_type (n_inner, nr, lnz);

                  octave_idx_type *Ltp = m_L.cidx ();
                  octave_idx_type *Ltj = m_L.ridx ();
                  lu_elt_type *Ltx = m_L.data ();

                  if (unz < 1)
                    m_U = lu_type (n_inner, nc,
                                   static_cast<octave_idx_type> (1));
                  else
                    m_U = lu_type (n_inner, nc, unz);

                  octave_idx_type *Up = m_U.cidx ();
                  octave_idx_type *Uj = m_U.ridx ();
                  lu_elt_type *Ux = m_U.data ();

                  m_R = SparseMatrix (nr, nr, nr);
                  for (octave_idx_type i = 0; i < nr; i++)
                    {
                      m_R.xridx (i) = i;
                      m_R.xcidx (i) = i;
                    }
                  m_R.xcidx (nr) = nr;
                  double *Rx = m_R.data ();

                  m_P.resize (dim_vector (nr, 1));
                  octave_idx_type *p = m_P.fortran_vec ();

                  m_Q.resize (dim_vector (nc, 1));
                  octave_idx_type *q = m_Q.fortran_vec ();

                  octave_idx_type do_recip;
                  status = umfpack_get_numeric<lu_elt_type> (Ltp, Ltj, Ltx,
                                                             Up, Uj, Ux,
                                                             p, q, nullptr,
                                                             &do_recip,
                                                             Rx, Numeric);

                  umfpack_free_numeric<lu_elt_type> (&Numeric);

                  if (status < 0)
                    {
                      umfpack_report_status<lu_elt_type> (control, status);

                      (*current_liboctave_error_handler)
                        ("sparse_lu: extracting LU factors failed");
                    }
                  else
                    {
                      m_L = m_L.transpose ();

                      if (do_recip)
                        for (octave_idx_type i = 0; i < nr; i++)
                          Rx[i] = 1.0 / Rx[i];

                      umfpack_report_matrix<lu_elt_type> (nr, n_inner,
                                                          m_L.cidx (),
                                                          m_L.ridx (),
                                                          m_L.data (),
                                                          static_cast<octave_idx_type> (1),
                                                          control);
                      umfpack_report_matrix<lu_elt_type> (n_inner, nc,
                                                          m_U.cidx (),
                                                          m_U.ridx (),
                                                          m_U.data (),
                                                          static_cast<octave_idx_type> (1),
                                                          control);
                      umfpack_report_perm<lu_elt_type> (nr, p, control);
                      umfpack_report_perm<lu_elt_type> (nc, q, control);
                    }

                  umfpack_report_info<lu_elt_type> (control, info);
                }
            }
        }

      if (udiag)
        (*current_liboctave_error_handler)
          ("Option udiag of incomplete LU not implemented");

#else

      octave_unused_parameter (a);
      octave_unused_parameter (Qinit);
      octave_unused_parameter (piv_thres);
      octave_unused_parameter (scale);
      octave_unused_parameter (FixedQ);
      octave_unused_parameter (droptol);
      octave_unused_parameter (milu);
      octave_unused_parameter (udiag);

      (*current_liboctave_error_handler)
        ("support for UMFPACK was unavailable or disabled when liboctave was built");

#endif
    }

    template <typename lu_type>
    lu_type
    sparse_lu<lu_type>::Y (void) const
    {
      octave_idx_type nr = m_L.rows ();
      octave_idx_type nz = m_L.cols ();
      octave_idx_type nc = m_U.cols ();

      lu_type Yout (nr, nc, m_L.nnz () + m_U.nnz () - (nr<nz?nr:nz));
      octave_idx_type ii = 0;
      Yout.xcidx (0) = 0;

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = m_U.cidx (j); i < m_U.cidx (j + 1); i++)
            {
              Yout.xridx (ii) = m_U.ridx (i);
              Yout.xdata (ii++) = m_U.data (i);
            }

          if (j < nz)
            {
              // Note the +1 skips the 1.0 on the diagonal
              for (octave_idx_type i = m_L.cidx (j) + 1;
                   i < m_L.cidx (j +1); i++)
                {
                  Yout.xridx (ii) = m_L.ridx (i);
                  Yout.xdata (ii++) = m_L.data (i);
                }
            }

          Yout.xcidx (j + 1) = ii;
        }

      return Yout;
    }

    template <typename lu_type>
    SparseMatrix
    sparse_lu<lu_type>::Pr (void) const
    {
      octave_idx_type nr = m_L.rows ();

      SparseMatrix Pout (nr, nr, nr);

      for (octave_idx_type i = 0; i < nr; i++)
        {
          Pout.cidx (i) = i;
          Pout.ridx (m_P(i)) = i;
          Pout.data (i) = 1;
        }

      Pout.cidx (nr) = nr;

      return Pout;
    }

    template <typename lu_type>
    ColumnVector
    sparse_lu<lu_type>::Pr_vec (void) const
    {
      octave_idx_type nr = m_L.rows ();

      ColumnVector Pout (nr);

      for (octave_idx_type i = 0; i < nr; i++)
        Pout.xelem (i) = static_cast<double> (m_P(i) + 1);

      return Pout;
    }

    template <typename lu_type>
    PermMatrix
    sparse_lu<lu_type>::Pr_mat (void) const
    {
      return PermMatrix (m_P, false);
    }

    template <typename lu_type>
    SparseMatrix
    sparse_lu<lu_type>::Pc (void) const
    {
      octave_idx_type nc = m_U.cols ();

      SparseMatrix Pout (nc, nc, nc);

      for (octave_idx_type i = 0; i < nc; i++)
        {
          Pout.cidx (i) = i;
          Pout.ridx (i) = m_Q(i);
          Pout.data (i) = 1;
        }

      Pout.cidx (nc) = nc;

      return Pout;
    }

    template <typename lu_type>
    ColumnVector
    sparse_lu<lu_type>::Pc_vec (void) const
    {
      octave_idx_type nc = m_U.cols ();

      ColumnVector Pout (nc);

      for (octave_idx_type i = 0; i < nc; i++)
        Pout.xelem (i) = static_cast<double> (m_Q(i) + 1);

      return Pout;
    }

    template <typename lu_type>
    PermMatrix
    sparse_lu<lu_type>::Pc_mat (void) const
    {
      return PermMatrix (m_Q, true);
    }

    // Instantiations we need.
    template class OCTAVE_API sparse_lu<SparseMatrix>;

    template class OCTAVE_API sparse_lu<SparseComplexMatrix>;

OCTAVE_END_NAMESPACE(math)
OCTAVE_END_NAMESPACE(octave)