view libinterp/parse-tree/pt-idx.cc @ 23084:ef4d915df748

maint: Merge stable to default.
author John W. Eaton <jwe@octave.org>
date Mon, 23 Jan 2017 14:27:48 -0500
parents 4e3d47dc7e25 e9a0469dedd9
children 092078913d54
line wrap: on
line source

/*

Copyright (C) 1996-2016 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "Cell.h"
#include "error.h"
#include "oct-map.h"
#include "ovl.h"
#include "oct-lvalue.h"
#include "ov.h"
#include "pager.h"
#include "pt-arg-list.h"
#include "pt-bp.h"
#include "pt-id.h"
#include "pt-idx.h"
#include "pt-walk.h"
#include "utils.h"
#include "variables.h"
#include "errwarn.h"

namespace octave
{
  // Index expressions.

  tree_index_expression::tree_index_expression (int l, int c)
    : tree_expression (l, c), expr (0), args (0), type (),
      arg_nm (), dyn_field () { }

  tree_index_expression::tree_index_expression (tree_expression *e,
                                                tree_argument_list *lst,
                                                int l, int c, char t)
    : tree_expression (l, c), expr (e), args (0), type (),
      arg_nm (), dyn_field ()
  {
    append (lst, t);
  }

  tree_index_expression::tree_index_expression (tree_expression *e,
                                                const std::string& n,
                                                int l, int c)
    : tree_expression (l, c), expr (e), args (0), type (),
      arg_nm (), dyn_field ()
  {
    append (n);
  }

  tree_index_expression::tree_index_expression (tree_expression *e,
                                                tree_expression *df,
                                                int l, int c)
    : tree_expression (l, c), expr (e), args (0), type (),
      arg_nm (), dyn_field ()
  {
    append (df);
  }

  void
  tree_index_expression::append (tree_argument_list *lst, char t)
  {
    args.push_back (lst);
    type.append (1, t);
    arg_nm.push_back (lst ? lst->get_arg_names () : string_vector ());
    dyn_field.push_back (static_cast<tree_expression *> (0));

    if (lst && lst->has_magic_tilde ())
      error ("invalid use of empty argument (~) in index expression");
  }

  void
  tree_index_expression::append (const std::string& n)
  {
    args.push_back (static_cast<tree_argument_list *> (0));
    type.append (".");
    arg_nm.push_back (n);
    dyn_field.push_back (static_cast<tree_expression *> (0));
  }

  void
  tree_index_expression::append (tree_expression *df)
  {
    args.push_back (static_cast<tree_argument_list *> (0));
    type.append (".");
    arg_nm.push_back ("");
    dyn_field.push_back (df);
  }

  tree_index_expression::~tree_index_expression (void)
  {
    delete expr;

    while (! args.empty ())
      {
        std::list<tree_argument_list *>::iterator p = args.begin ();
        delete *p;
        args.erase (p);
      }

    while (! dyn_field.empty ())
      {
        std::list<tree_expression *>::iterator p = dyn_field.begin ();
        delete *p;
        dyn_field.erase (p);
      }
  }

  bool
  tree_index_expression::has_magic_end (void) const
  {
    for (const tree_argument_list* elt : args)
      {
        if (elt && elt->has_magic_end ())
          return true;
      }

    return false;
  }

  // This is useful for printing the name of the variable in an indexed
  // assignment.

  std::string
  tree_index_expression::name (void) const
  {
    return expr->name ();
  }
}

static Cell
make_subs_cell (octave::tree_argument_list *args, const string_vector& arg_nm)
{
  Cell retval;

  octave_value_list arg_values;

  if (args)
    arg_values = args->convert_to_const_vector ();

  int n = arg_values.length ();

  if (n > 0)
    {
      arg_values.stash_name_tags (arg_nm);

      retval.resize (dim_vector (1, n));

      for (int i = 0; i < n; i++)
        retval(0,i) = arg_values(i);
    }

  return retval;
}

static inline octave_value_list
make_value_list (octave::tree_argument_list *args, const string_vector& arg_nm,
                 const octave_value *object, bool rvalue = true)
{
  octave_value_list retval;

  if (args)
    {
      if (rvalue && object && args->has_magic_end () && object->is_undefined ())
        err_invalid_inquiry_subscript ();

      retval = args->convert_to_const_vector (object);
    }

  octave_idx_type n = retval.length ();

  if (n > 0)
    retval.stash_name_tags (arg_nm);

  return retval;
}

namespace octave
{
  std::string
  tree_index_expression::get_struct_index
  (std::list<string_vector>::const_iterator p_arg_nm,
   std::list<tree_expression *>::const_iterator p_dyn_field) const
  {
    std::string fn = (*p_arg_nm)(0);

    if (fn.empty ())
      {
        tree_expression *df = *p_dyn_field;

        if (df)
          {
            octave_value t = df->rvalue1 ();

            fn = t.xstring_value ("dynamic structure field names must be strings");
          }
        else
          panic_impossible ();
      }

    return fn;
  }

  octave_map
  tree_index_expression::make_arg_struct (void) const
  {
    int n = args.size ();

    Cell type_field (n, 1);
    Cell subs_field (n, 1);

    std::list<tree_argument_list *>::const_iterator p_args = args.begin ();
    std::list<string_vector>::const_iterator p_arg_nm = arg_nm.begin ();
    std::list<tree_expression *>::const_iterator p_dyn_field = dyn_field.begin ();

    octave_map m;

    for (int i = 0; i < n; i++)
      {
        switch (type[i])
          {
          case '(':
            subs_field(i) = make_subs_cell (*p_args, *p_arg_nm);
            break;

          case '{':
            subs_field(i) = make_subs_cell (*p_args, *p_arg_nm);
            break;

          case '.':
            subs_field(i) = get_struct_index (p_arg_nm, p_dyn_field);
            break;

          default:
            panic_impossible ();
          }

        p_args++;
        p_arg_nm++;
        p_dyn_field++;
      }

    m.assign ("type", type_field);
    m.assign ("subs", subs_field);

    return m;
  }

  octave_value_list
  tree_index_expression::rvalue (int nargout)
  {
    return tree_index_expression::rvalue (nargout, 0);
  }
}

// Final step of processing an indexing error.  Add the name of the
// variable being indexed, if any, then issue an error.  (Will this also
// be needed by pt-lvalue, which calls subsref?)

static void
final_index_error (octave::index_exception& e,
                   const octave::tree_expression *expr)
{
  std::string extra_message;

  if (expr->is_identifier ()
      && dynamic_cast<const octave::tree_identifier *> (expr)->is_variable ())
    {
      std::string var = expr->name ();

      e.set_var (var);

      octave_value fcn = symbol_table::find_function (var);

      if (fcn.is_function ())
        {
          octave_function *fp = fcn.function_value ();

          if (fp && fp->name () == var)
            extra_message = " (note: variable '" + var + "' shadows function)";
        }
    }

  std::string msg = e.message () + extra_message;

  error_with_id (e.err_id (), msg.c_str ());
}

namespace octave
{
  octave_value_list
  tree_index_expression::rvalue (int nargout,
                                 const std::list<octave_lvalue> *lvalue_list)
  {
    octave_value_list retval;

    octave_value first_expr_val;

    octave_value_list first_args;

    bool have_args = false;

    if (expr->is_identifier () && type[0] == '(')
      {
        tree_identifier *id = dynamic_cast<tree_identifier *> (expr);

        if (! (id->is_variable () || args.empty ()))
          {
            tree_argument_list *al = *(args.begin ());

            size_t n = al ? al->length () : 0;

            if (n > 0)
              {
                string_vector anm = *(arg_nm.begin ());
                have_args = true;
                first_args = al -> convert_to_const_vector ();
                first_args.stash_name_tags (anm);

                first_expr_val = id->do_lookup  (first_args);
              }
          }
      }

    if (first_expr_val.is_undefined ())
      first_expr_val = expr->rvalue1 ();

    octave_value tmp = first_expr_val;
    octave_idx_type tmpi = 0;

    std::list<octave_value_list> idx;

    int n = args.size ();

    std::list<tree_argument_list *>::iterator p_args = args.begin ();
    std::list<string_vector>::iterator p_arg_nm = arg_nm.begin ();
    std::list<tree_expression *>::iterator p_dyn_field = dyn_field.begin ();

    for (int i = 0; i < n; i++)
      {
        if (i > 0)
          {
            tree_argument_list *al = *p_args;

            // In Matlab, () can only be followed by '.'.  In Octave, we do not
            // enforce this for rvalue expressions, but we'll split the
            // evaluation at this point.  This will, hopefully, allow Octave's
            // looser rules apply smoothly for Matlab overloaded subsref
            // codes.
            bool force_split = type[i-1] == '(' && type[i] != '.';

            if (force_split || (al && al->has_magic_end ()))
              {
                // (we have force_split, or) we have an expression like
                //
                //   x{end}.a(end)
                //
                // and we are looking at the argument list that
                // contains the second (or third, etc.) "end" token,
                // so we must evaluate everything up to the point of
                // that argument list so we can pass the appropriate
                // value to the built-in end function.

                try
                  {
                    octave_value_list tmp_list
                      =tmp.subsref (type.substr (tmpi, i-tmpi), idx, nargout);

                    tmp = tmp_list.length () ? tmp_list(0) : octave_value ();
                    tmpi = i;
                    idx.clear ();

                    if (tmp.is_cs_list ())
                      err_indexed_cs_list ();

                    if (tmp.is_function ())
                      {
                        octave_function *fcn = tmp.function_value (true);

                        if (fcn && ! fcn->is_postfix_index_handled (type[i]))
                          {
                            octave_value_list empty_args;

                            tmp_list = tmp.do_multi_index_op (1, empty_args);
                            tmp = (tmp_list.length ()
                                   ? tmp_list(0) : octave_value ());

                            if (tmp.is_cs_list ())
                              err_indexed_cs_list ();
                          }
                      }
                  }
                catch (octave::index_exception& e)  // problems with index range, type etc.
                  {
                    final_index_error (e, expr);
                  }
              }
          }

        switch (type[i])
          {
          case '(':
            if (have_args)
              {
                idx.push_back (first_args);
                have_args = false;
              }
            else
              idx.push_back (make_value_list (*p_args, *p_arg_nm, &tmp));
            break;

          case '{':
            idx.push_back (make_value_list (*p_args, *p_arg_nm, &tmp));
            break;

          case '.':
            idx.push_back (octave_value (get_struct_index (p_arg_nm,
                                                           p_dyn_field)));
            break;

          default:
            panic_impossible ();
          }

        p_args++;
        p_arg_nm++;
        p_dyn_field++;
      }

    try
      {
        retval = tmp.subsref (type.substr (tmpi, n - tmpi), idx, nargout,
                              lvalue_list);
      }
    catch (octave::index_exception& e)  // range problems, bad index type, etc.
      {
        final_index_error (e, expr);
      }

    octave_value val = retval.length () ? retval(0) : octave_value ();

    if (val.is_function ())
      {
        octave_function *fcn = val.function_value (true);

        if (fcn)
          {
            octave_value_list empty_args;

            retval = (lvalue_list
                      ? val.do_multi_index_op (nargout, empty_args,
                                               lvalue_list)
                      : val.do_multi_index_op (nargout, empty_args));
          }
      }

    return retval;
  }

  octave_value
  tree_index_expression::rvalue1 (int nargout)
  {
    octave_value retval;

    const octave_value_list tmp = rvalue (nargout);

    if (! tmp.empty ())
      retval = tmp(0);

    return retval;
  }

  octave_lvalue
  tree_index_expression::lvalue (void)
  {
    octave_lvalue retval;

    std::list<octave_value_list> idx;
    std::string tmp_type;

    int n = args.size ();

    std::list<tree_argument_list *>::iterator p_args = args.begin ();
    std::list<string_vector>::iterator p_arg_nm = arg_nm.begin ();
    std::list<tree_expression *>::iterator p_dyn_field = dyn_field.begin ();

    retval = expr->lvalue ();

    octave_value tmp = retval.value ();

    octave_idx_type tmpi = 0;
    std::list<octave_value_list> tmpidx;

    for (int i = 0; i < n; i++)
      {
        if (retval.numel () != 1)
          err_indexed_cs_list ();

        if (tmpi < i)
          {
            try
              {
                tmp = tmp.subsref (type.substr (tmpi, i-tmpi), tmpidx, true);
              }
            catch (octave::index_exception& e)  // problems with range, invalid type etc.
              {
                final_index_error (e, expr);
              }

            tmpidx.clear ();
          }

        switch (type[i])
          {
          case '(':
            {
              octave_value_list tidx
                = make_value_list (*p_args, *p_arg_nm, &tmp, false);

              idx.push_back (tidx);

              if (i < n - 1)
                {
                  if (type[i+1] != '.')
                    error ("() must be followed by . or close the index chain");

                  tmpidx.push_back (tidx);
                  tmpi = i+1;
                }
            }
            break;

          case '{':
            {
              octave_value_list tidx
                = make_value_list (*p_args, *p_arg_nm, &tmp, false);

              if (tmp.is_undefined ())
                {
                  if (tidx.has_magic_colon ())
                    err_invalid_inquiry_subscript ();

                  tmp = Cell ();
                }
              else if (tmp.is_zero_by_zero ()
                       && (tmp.is_matrix_type () || tmp.is_string ()))
                {
                  tmp = Cell ();
                }

              retval.numel (tmp.numel (tidx));

              idx.push_back (tidx);
              tmpidx.push_back (tidx);
              tmpi = i;
            }
            break;

          case '.':
            {
              octave_value tidx = get_struct_index (p_arg_nm, p_dyn_field);

              bool autoconv = (tmp.is_zero_by_zero ()
                               && (tmp.is_matrix_type () || tmp.is_string ()
                                   || tmp.is_cell ()));

              if (i > 0 && type[i-1] == '(')
                {
                  octave_value_list pidx = idx.back ();

                  // Use octave_map, not octave_scalar_map so that the
                  // dimensions are 0x0, not 1x1.
                  if (tmp.is_undefined ())
                    {
                      if (pidx.has_magic_colon ())
                        err_invalid_inquiry_subscript ();

                      tmp = octave_map ();
                    }
                  else if (autoconv)
                    tmp = octave_map ();

                  retval.numel (tmp.numel (pidx));

                  tmpi = i-1;
                  tmpidx.push_back (tidx);
                }
              else
                {
                  if (tmp.is_undefined () || autoconv)
                    {
                      tmpi = i+1;
                      tmp = octave_value ();
                    }
                  else
                    {
                      retval.numel (tmp.numel (octave_value_list ()));

                      tmpi = i;
                      tmpidx.push_back (tidx);
                    }
                }

              idx.push_back (tidx);
            }
            break;

          default:
            panic_impossible ();
          }

        if (idx.back ().empty ())
          error ("invalid empty index list");

        p_args++;
        p_arg_nm++;
        p_dyn_field++;
      }

    retval.set_index (type, idx);

    return retval;
  }

  tree_index_expression *
  tree_index_expression::dup (symbol_table::scope_id scope,
                              symbol_table::context_id context) const
  {
    tree_index_expression *new_idx_expr
      = new tree_index_expression (line (), column ());

    new_idx_expr->expr = expr ? expr->dup (scope, context) : 0;

    std::list<tree_argument_list *> new_args;

    for (const tree_argument_list* elt : args)
      new_args.push_back (elt ? elt->dup (scope, context) : 0);

    new_idx_expr->args = new_args;

    new_idx_expr->type = type;

    new_idx_expr->arg_nm = arg_nm;

    std::list<tree_expression *> new_dyn_field;

    for (const tree_expression* elt : dyn_field)
      new_dyn_field.push_back (elt ? elt->dup (scope, context) : 0);

    new_idx_expr->dyn_field = new_dyn_field;

    new_idx_expr->copy_base (*this);

    return new_idx_expr;
  }

  void
  tree_index_expression::accept (tree_walker& tw)
  {
    tw.visit_index_expression (*this);
  }
}

/*
%!test
%! clear x;
%! clear y;
%! y = 3;
%! x(y(end)) = 1;
%! assert (x, [0, 0, 1]);
%! clear x;
%! clear y;
%! y = {3};
%! x(y{end}) = 1;
%! assert (x, [0, 0, 1]);

%!test
%! x = {1, 2, 3};
%! [x{:}] = deal (4, 5, 6);
%! assert (x, {4, 5, 6});

%!test
%! [x.a, x.b.c] = deal (1, 2);
%! assert (x.a == 1 && x.b.c == 2);

%!test
%! [x.a, x(2).b] = deal (1, 2);
%! assert (x(1).a == 1 && isempty (x(2).a) && isempty (x(1).b) && x(2).b == 2);

%!test
%! x = struct (zeros (0, 1), {"a", "b"});
%! x(2).b = 1;
%! assert (x(2).b == 1);

%!test
%! x = struct (zeros (0, 1), {"a", "b"});
%! x(2).b = 1;
%! assert (x(2).b == 1);
*/