view liboctave/array/dim-vector.h @ 29949:f254c302bb9c

remove JIT compiler from Octave sources As stated in the NEWS file entry added with this changeset, no one has ever seriously taken on further development of the JIT compiler in Octave since it was first added as part of a Google Summer of Code project in 2012 and it still does nothing significant. It is out of date with the default interpreter that walks the parse tree. Even though we have fixed the configure script to disable it by default, people still ask questions about how to build it, but it doesn’t seem that they are doing that to work on it but because they think it will make Octave code run faster (it never did, except for some extremely simple bits of code as examples for demonstration purposes only). * NEWS: Note change. * configure.ac, acinclude.m4: Eliminate checks and macros related to the JIT compiler and LLVM. * basics.txi, install.txi, octave.texi, vectorize.txi: Remove mention of JIT compiler and LLVM. * jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, pt-jit.cc, pt-jit.h: Delete. * libinterp/parse-tree/module.mk: Update. * Array-jit.cc: Delete. * libinterp/template-inst/module.mk: Update. * test/jit.tst: Delete. * test/module.mk: Update. * interpreter.cc (interpreter::interpreter): Don't check options for debug_jit or jit_compiler. * toplev.cc (F__octave_config_info__): Remove JIT compiler and LLVM info from struct. * ov-base.h (octave_base_value::grab, octave_base_value::release): Delete. * ov-builtin.h, ov-builtin.cc (octave_builtin::to_jit, octave_builtin::stash_jit): Delete. (octave_builtin::m_jtype): Delete data member and all uses. * ov-usr-fcn.h, ov-usr-fcn.cc (octave_user_function::m_jit_info): Delete data member and all uses. (octave_user_function::get_info, octave_user_function::stash_info): Delete. * options.h (DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete macro definitions and all uses. * octave.h, octave.cc (cmdline_options::cmdline_options): Don't handle DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete. (cmdline_options::debug_jit, cmdline_options::jit_compiler): Delete functions and all uses. (cmdline_options::m_debug_jit, cmdline_options::m_jit_compiler): Delete data members and all uses. (octave_getopt_options long_opts): Remove "debug-jit" and "jit-compiler" from the list. * pt-eval.cc (tree_evaluator::visit_simple_for_command, tree_evaluator::visit_complex_for_command, tree_evaluator::visit_while_command, tree_evaluator::execute_user_function): Eliminate JIT compiler code. * pt-loop.h, pt-loop.cc (tree_while_command::get_info, tree_while_command::stash_info, tree_simple_for_command::get_info, tree_simple_for_command::stash_info): Delete functions and all uses. (tree_while_command::m_compiled, tree_simple_for_command::m_compiled): Delete member variable and all uses. * usage.h (usage_string, octave_print_verbose_usage_and_exit): Remove [--debug-jit] and [--jit-compiler] from the message. * Array.h (Array<T>::Array): Remove constructor that was only intended to be used by the JIT compiler. (Array<T>::jit_ref_count, Array<T>::jit_slice_data, Array<T>::jit_dimensions, Array<T>::jit_array_rep): Delete. * Marray.h (MArray<T>::MArray): Remove constructor that was only intended to be used by the JIT compiler. * NDArray.h (NDArray::NDarray): Remove constructor that was only intended to be used by the JIT compiler. * dim-vector.h (dim_vector::to_jit): Delete. (dim_vector::dim_vector): Remove constructor that was only intended to be used by the JIT compiler. * codeql-analysis.yaml, make.yaml: Don't require llvm-dev. * subst-config-vals.in.sh, subst-cross-config-vals.in.sh: Don't substitute OCTAVE_CONF_LLVM_CPPFLAGS, OCTAVE_CONF_LLVM_LDFLAGS, or OCTAVE_CONF_LLVM_LIBS. * Doxyfile.in: Don't define HAVE_LLVM. * aspell-octave.en.pws: Eliminate jit, JIT, and LLVM from the list of spelling exceptions. * build-env.h, build-env.in.cc (LLVM_CPPFLAGS, LLVM_LDFLAGS, LLVM_LIBS): Delete variables and all uses. * libinterp/corefcn/module.mk (%canon_reldir%_libcorefcn_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list. * libinterp/parse-tree/module.mk (%canon_reldir%_libparse_tree_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list.
author John W. Eaton <jwe@octave.org>
date Tue, 10 Aug 2021 16:42:29 -0400
parents 13e9e244284e
children e38202d3628d
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2003-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// or <https://octave.org/copyright/>.
//
// Copyirght (C) 2009, 2010 VZLU Prague
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_dim_vector_h)
#define octave_dim_vector_h 1

#include "octave-config.h"

#include <cassert>

#include <algorithm>
#include <initializer_list>
#include <string>

#include "oct-atomic.h"
#include "oct-refcount.h"

template <typename T> class Array;

//! Vector representing the dimensions (size) of an Array.
//!
//! A dim_vector is used to represent dimensions of an Array.  It is used
//! on its constructor to specify its size, or when reshaping it.
//!
//! @code{.cc}
//! // Matrix with 10 rows and 20 columns.
//! Matrix m Matrix (dim_vector (10, 20));
//!
//! // Change its size to 5 rows and 40 columns.
//! Matrix m2 = m.reshape (dim_vector (5, 40));
//!
//! // Five dimensional Array of length 10, 20, 3, 8, 7 on each dimension.
//! NDArray a (dim_vector (10, 20, 3, 8, 7));
//!
//! // Uninitialized array of same size as other.
//! NDArray b (a.dims ());
//! @endcode
//!
//! The main thing to understand about this class, is that methods such as
//! ndims() and numel(), return the value for an Array of these dimensions,
//! not the actual number of elements in the dim_vector.
//!
//! @code{.cc}
//! dim_vector d (10, 5, 3);
//! octave_idx_type n = d.numel (); // returns 150
//! octave_idx_type nd = d.ndims (); // returns 3
//! @endcode
//!
//! ## Implementation details ##
//!
//! This implementation is more tricky than Array, but the big plus is that
//! dim_vector requires only one allocation instead of two.  It is (slightly)
//! patterned after GCC's basic_string implementation.  rep is a pointer to an
//! array of memory, comprising count, length, and the data:
//!
//! @verbatim
//!        <count>
//!        <ndims>
//! rep --> <dims[0]>
//!        <dims[1]>
//!        ...
//! @endverbatim
//!
//! The inlines count(), ndims() recover this data from the rep.  Note
//! that rep points to the beginning of dims to grant faster access
//! (reinterpret_cast is assumed to be an inexpensive operation).

class
OCTAVE_API
dim_vector
{
private:

  octave_idx_type m_num_dims;

  octave_idx_type *m_dims;

public:

  //! Construct dim_vector for a N dimensional array.
  //!
  //! Each argument to constructor defines the length of an additional
  //! dimension.  A dim_vector always represents a minimum of 2 dimensions
  //! (just like an Array has at least 2 dimensions) and there is no
  //! upper limit on the number of dimensions.
  //!
  //! @code{.cc}
  //! dim_vector dv (7, 5);
  //! Matrix mat (dv);
  //! @endcode
  //!
  //! The constructed dim_vector @c dv will have two elements, @f$[7, 5]@f$,
  //! one for each dimension.  It can then be used to construct a Matrix
  //! with such dimensions, i.e., 7 rows and 5 columns.
  //!
  //! @code{.cc}
  //! NDArray x (dim_vector (7, 5, 10));
  //! @endcode
  //!
  //! This will construct a 3 dimensional NDArray of lengths 7, 5, and 10,
  //! on the first, second, and third dimension (rows, columns, and pages)
  //! respectively.
  //!
  //! Note that that there is no constructor that accepts only one
  //! dimension length to avoid confusion.  The source for such confusion
  //! is that constructor could mean:
  //!   - a column vector, i.e., assume @f$[N, 1]@f$;
  //!   - a square matrix, i.e., as is common in Octave interpreter;
  //!   - support for a 1 dimensional Array (does not exist);
  //!
  //! Using r, c, and lengths... as arguments, allow us to check at compile
  //! time that there's at least 2 dimensions specified, while maintaining
  //! type safety.

  template <typename... Ints>
  dim_vector (const octave_idx_type r, const octave_idx_type c,
              Ints... lengths)
    : m_num_dims (2 + sizeof... (Ints)), m_dims (new octave_idx_type [m_num_dims])
  {
    std::initializer_list<octave_idx_type> all_lengths = {r, c, lengths...};
    octave_idx_type *ptr = m_dims;
    for (const octave_idx_type l: all_lengths)
      *ptr++ = l;
  }

  // Fast access with absolutely no checking

  octave_idx_type& xelem (int i) { return m_dims[i]; }

  octave_idx_type xelem (int i) const { return m_dims[i]; }

  // Safe access to to elements

  octave_idx_type& elem (int i)
  {
    return xelem (i);
  }

  octave_idx_type elem (int i) const { return xelem (i); }

  void chop_trailing_singletons (void)
  {
    while (m_num_dims > 2 && xelem(m_num_dims-1) == 1)
      m_num_dims--;
  }

  OCTAVE_API void chop_all_singletons (void);

private:

  explicit dim_vector (octave_idx_type ndims)
    : m_num_dims (ndims < 2 ? 2 : ndims), m_dims (new octave_idx_type [m_num_dims])
  {
    std::fill_n (m_dims, m_num_dims, 0);
  }

public:

  static OCTAVE_API octave_idx_type dim_max (void);

  explicit dim_vector (void)
    : m_num_dims (2), m_dims (new octave_idx_type [m_num_dims])
  {
    std::fill_n (m_dims, m_num_dims, 0);
  }

  dim_vector (const dim_vector& dv)
    : m_num_dims (dv.m_num_dims), m_dims (new octave_idx_type [m_num_dims])
  {
    std::copy_n (dv.m_dims, m_num_dims, m_dims);
  }

  dim_vector (dim_vector&& dv)
    : m_num_dims (0), m_dims (nullptr)
  {
    *this = std::move (dv);
  }

  static dim_vector alloc (int n)
  {
    return dim_vector (n);
  }

  dim_vector& operator = (const dim_vector& dv)
  {
    if (&dv != this)
      {
        delete [] m_dims;

        m_num_dims = dv.m_num_dims;
        m_dims = new octave_idx_type [m_num_dims];

        std::copy_n (dv.m_dims, m_num_dims, m_dims);
      }

    return *this;
  }

  dim_vector& operator = (dim_vector&& dv)
  {
    if (&dv != this)
      {
        // Because we define a move constructor and a move assignment
        // operator, m_dims may be a nullptr here.  We should only need to
        // protect the destructor in a similar way.

        delete [] m_dims;

        m_num_dims = dv.m_num_dims;
        m_dims = dv.m_dims;

        dv.m_num_dims = 0;
        dv.m_dims = nullptr;
      }

    return *this;
  }

  ~dim_vector (void)
  {
    // Because we define a move constructor and a move assignment
    // operator, m_dims may be a nullptr here.  We should only need to
    // protect the move assignment operator in a similar way.

    delete [] m_dims;
  }

  //! Number of dimensions.
  //!
  //! Returns the number of dimensions of the dim_vector.  This is number of
  //! elements in the dim_vector including trailing singletons.  It is also
  //! the number of dimensions an Array with this dim_vector would have.

  octave_idx_type ndims (void) const { return m_num_dims; }

  //! Number of dimensions.
  //! Synonymous with ndims().
  //!
  //! While this method is not officially deprecated, consider using ndims()
  //! instead to avoid confusion.  Array does not have length because of its
  //! odd definition as length of the longest dimension.

  int length (void) const { return ndims (); }

  octave_idx_type& operator () (int i) { return elem (i); }

  octave_idx_type operator () (int i) const { return elem (i); }

  void resize (int n, int fill_value = 0)
  {
    if (n < 2)
      n = 2;

    if (n == m_num_dims)
      return;

    if (n < m_num_dims)
      {
        m_num_dims = n;
        return;
      }

    octave_idx_type *new_rep = new octave_idx_type [n];

    std::copy_n (m_dims, m_num_dims, new_rep);
    std::fill_n (new_rep + m_num_dims, n - m_num_dims, fill_value);

    delete [] m_dims;

    m_dims = new_rep;

    m_num_dims = n;
  }

  OCTAVE_API std::string str (char sep = 'x') const;

  bool all_zero (void) const
  {
    return std::all_of (m_dims, m_dims + ndims (),
                        [] (octave_idx_type dim) { return dim == 0; });
  }

  bool empty_2d (void) const
  {
    return ndims () == 2 && (xelem (0) == 0 || xelem (1) == 0);
  }

  bool zero_by_zero (void) const
  {
    return ndims () == 2 && xelem (0) == 0 && xelem (1) == 0;
  }

  bool any_zero (void) const
  {
    return std::any_of (m_dims, m_dims + ndims (),
                        [] (octave_idx_type dim) { return dim == 0; });
  }

  OCTAVE_API int num_ones (void) const;

  bool all_ones (void) const
  {
    return (num_ones () == ndims ());
  }

  //! Number of elements that a matrix with this dimensions would have.
  //!
  //! Return the number of elements that a matrix with this dimension
  //! vector would have, NOT the number of dimensions (elements in the
  //! dimension vector).

  octave_idx_type numel (int n = 0) const
  {
    int n_dims = ndims ();

    octave_idx_type retval = 1;

    for (int i = n; i < n_dims; i++)
      retval *= elem (i);

    return retval;
  }

  //! The following function will throw a std::bad_alloc ()
  //! exception if the requested size is larger than can be indexed by
  //! octave_idx_type.  This may be smaller than the actual amount of
  //! memory that can be safely allocated on a system.  However, if we
  //! don't fail here, we can end up with a mysterious crash inside a
  //! function that is iterating over an array using octave_idx_type
  //! indices.

  OCTAVE_API octave_idx_type safe_numel (void) const;

  bool any_neg (void) const
  {
    return std::any_of (m_dims, m_dims + ndims (),
                        [] (octave_idx_type dim) { return dim < 0; });
  }

  OCTAVE_API dim_vector squeeze (void) const;

  //! This corresponds to cat().
  OCTAVE_API bool concat (const dim_vector& dvb, int dim);

  //! This corresponds to [,] (horzcat, dim = 0) and [;] (vertcat, dim = 1).
  // The rules are more relaxed here.
  OCTAVE_API bool hvcat (const dim_vector& dvb, int dim);

  //! Force certain dimensionality, preserving numel ().  Missing
  //! dimensions are set to 1, redundant are folded into the trailing
  //! one.  If n = 1, the result is 2d and the second dim is 1
  //! (dim_vectors are always at least 2D).

  OCTAVE_API dim_vector redim (int n) const;

  dim_vector as_column (void) const
  {
    if (ndims () == 2 && xelem (1) == 1)
      return *this;
    else
      return dim_vector (numel (), 1);
  }

  dim_vector as_row (void) const
  {
    if (ndims () == 2 && xelem (0) == 1)
      return *this;
    else
      return dim_vector (1, numel ());
  }

  bool isvector (void) const
  {
    return (ndims () == 2 && (xelem (0) == 1 || xelem (1) == 1));
  }

  bool is_nd_vector (void) const
  {
    int num_non_one = 0;

    for (int i = 0; i < ndims (); i++)
      {
        if (xelem (i) != 1)
          {
            num_non_one++;

            if (num_non_one > 1)
              break;
          }
      }

    return num_non_one == 1;
  }

  // Create a vector with length N.  If this object is a vector,
  // preserve the orientation, otherwise, create a column vector.

  dim_vector make_nd_vector (octave_idx_type n) const
  {
    dim_vector orig_dims;

    if (is_nd_vector ())
      {
        orig_dims = *this;

        for (int i = 0; i < orig_dims.ndims (); i++)
          {
            if (orig_dims(i) != 1)
              {
                orig_dims(i) = n;
                break;
              }
          }
      }
    else
      orig_dims = dim_vector (n, 1);

    return orig_dims;
  }

  int first_non_singleton (int def = 0) const
  {
    for (int i = 0; i < ndims (); i++)
      {
        if (xelem (i) != 1)
          return i;
      }

    return def;
  }

  //! Linear index from an index tuple.
  octave_idx_type compute_index (const octave_idx_type *idx) const
  { return compute_index (idx, ndims ()); }

  //! Linear index from an incomplete index tuple (nidx < length ()).
  octave_idx_type compute_index (const octave_idx_type *idx, int nidx) const
  {
    octave_idx_type k = 0;
    for (int i = nidx - 1; i >= 0; i--)
      k = xelem(i) * k + idx[i];

    return k;
  }

  //! Increment a multi-dimensional index tuple, optionally starting
  //! from an offset position and return the index of the last index
  //! position that was changed, or length () if just cycled over.

  int increment_index (octave_idx_type *idx, int start = 0) const
  {
    int i;
    for (i = start; i < ndims (); i++)
      {
        if (++(*idx) == xelem(i))
          *idx++ = 0;
        else
          break;
      }
    return i;
  }

  //! Return cumulative dimensions.

  dim_vector cumulative (void) const
  {
    int nd = ndims ();
    dim_vector retval = alloc (nd);

    octave_idx_type k = 1;
    for (int i = 0; i < nd; i++)
      retval.xelem(i) = (k *= xelem(i));

    return retval;
  }

  //! Compute a linear index from an index tuple.  Dimensions are
  //! required to be cumulative.

  octave_idx_type cum_compute_index (const octave_idx_type *idx) const
  {
    octave_idx_type k = idx[0];

    for (int i = 1; i < ndims (); i++)
      k += xelem(i-1) * idx[i];

    return k;
  }

  friend OCTAVE_API bool
  operator == (const dim_vector& a, const dim_vector& b);

  OCTAVE_API Array<octave_idx_type> as_array (void) const;
};

inline bool
operator == (const dim_vector& a, const dim_vector& b)
{
  // Fast case.
  if (a.m_dims == b.m_dims)
    return true;

  int a_len = a.ndims ();
  int b_len = b.ndims ();

  if (a_len != b_len)
    return false;

  return std::equal (a.m_dims, a.m_dims + a_len, b.m_dims);
}

inline bool
operator != (const dim_vector& a, const dim_vector& b)
{
  return ! operator == (a, b);
}

#endif