view scripts/general/gradient.m @ 29949:f254c302bb9c

remove JIT compiler from Octave sources As stated in the NEWS file entry added with this changeset, no one has ever seriously taken on further development of the JIT compiler in Octave since it was first added as part of a Google Summer of Code project in 2012 and it still does nothing significant. It is out of date with the default interpreter that walks the parse tree. Even though we have fixed the configure script to disable it by default, people still ask questions about how to build it, but it doesn’t seem that they are doing that to work on it but because they think it will make Octave code run faster (it never did, except for some extremely simple bits of code as examples for demonstration purposes only). * NEWS: Note change. * configure.ac, acinclude.m4: Eliminate checks and macros related to the JIT compiler and LLVM. * basics.txi, install.txi, octave.texi, vectorize.txi: Remove mention of JIT compiler and LLVM. * jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, pt-jit.cc, pt-jit.h: Delete. * libinterp/parse-tree/module.mk: Update. * Array-jit.cc: Delete. * libinterp/template-inst/module.mk: Update. * test/jit.tst: Delete. * test/module.mk: Update. * interpreter.cc (interpreter::interpreter): Don't check options for debug_jit or jit_compiler. * toplev.cc (F__octave_config_info__): Remove JIT compiler and LLVM info from struct. * ov-base.h (octave_base_value::grab, octave_base_value::release): Delete. * ov-builtin.h, ov-builtin.cc (octave_builtin::to_jit, octave_builtin::stash_jit): Delete. (octave_builtin::m_jtype): Delete data member and all uses. * ov-usr-fcn.h, ov-usr-fcn.cc (octave_user_function::m_jit_info): Delete data member and all uses. (octave_user_function::get_info, octave_user_function::stash_info): Delete. * options.h (DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete macro definitions and all uses. * octave.h, octave.cc (cmdline_options::cmdline_options): Don't handle DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete. (cmdline_options::debug_jit, cmdline_options::jit_compiler): Delete functions and all uses. (cmdline_options::m_debug_jit, cmdline_options::m_jit_compiler): Delete data members and all uses. (octave_getopt_options long_opts): Remove "debug-jit" and "jit-compiler" from the list. * pt-eval.cc (tree_evaluator::visit_simple_for_command, tree_evaluator::visit_complex_for_command, tree_evaluator::visit_while_command, tree_evaluator::execute_user_function): Eliminate JIT compiler code. * pt-loop.h, pt-loop.cc (tree_while_command::get_info, tree_while_command::stash_info, tree_simple_for_command::get_info, tree_simple_for_command::stash_info): Delete functions and all uses. (tree_while_command::m_compiled, tree_simple_for_command::m_compiled): Delete member variable and all uses. * usage.h (usage_string, octave_print_verbose_usage_and_exit): Remove [--debug-jit] and [--jit-compiler] from the message. * Array.h (Array<T>::Array): Remove constructor that was only intended to be used by the JIT compiler. (Array<T>::jit_ref_count, Array<T>::jit_slice_data, Array<T>::jit_dimensions, Array<T>::jit_array_rep): Delete. * Marray.h (MArray<T>::MArray): Remove constructor that was only intended to be used by the JIT compiler. * NDArray.h (NDArray::NDarray): Remove constructor that was only intended to be used by the JIT compiler. * dim-vector.h (dim_vector::to_jit): Delete. (dim_vector::dim_vector): Remove constructor that was only intended to be used by the JIT compiler. * codeql-analysis.yaml, make.yaml: Don't require llvm-dev. * subst-config-vals.in.sh, subst-cross-config-vals.in.sh: Don't substitute OCTAVE_CONF_LLVM_CPPFLAGS, OCTAVE_CONF_LLVM_LDFLAGS, or OCTAVE_CONF_LLVM_LIBS. * Doxyfile.in: Don't define HAVE_LLVM. * aspell-octave.en.pws: Eliminate jit, JIT, and LLVM from the list of spelling exceptions. * build-env.h, build-env.in.cc (LLVM_CPPFLAGS, LLVM_LDFLAGS, LLVM_LIBS): Delete variables and all uses. * libinterp/corefcn/module.mk (%canon_reldir%_libcorefcn_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list. * libinterp/parse-tree/module.mk (%canon_reldir%_libparse_tree_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list.
author John W. Eaton <jwe@octave.org>
date Tue, 10 Aug 2021 16:42:29 -0400
parents 7854d5752dd2
children 796f54d4ddbf
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2021 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{dx} =} gradient (@var{m})
## @deftypefnx {} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m})
## @deftypefnx {} {[@dots{}] =} gradient (@var{m}, @var{s})
## @deftypefnx {} {[@dots{}] =} gradient (@var{m}, @var{x}, @var{y}, @var{z}, @dots{})
## @deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0})
## @deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s})
## @deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{x}, @var{y}, @dots{})
##
## Calculate the gradient of sampled data or a function.
##
## If @var{m} is a vector, calculate the one-dimensional gradient of @var{m}.
## If @var{m} is a matrix the gradient is calculated for each dimension.
##
## @code{[@var{dx}, @var{dy}] = gradient (@var{m})} calculates the
## one-dimensional gradient for @var{x} and @var{y} direction if @var{m} is a
## matrix.  Additional return arguments can be use for multi-dimensional
## matrices.
##
## A constant spacing between two points can be provided by the @var{s}
## parameter.  If @var{s} is a scalar, it is assumed to be the spacing for all
## dimensions.  Otherwise, separate values of the spacing can be supplied by
## the @var{x}, @dots{} arguments.  Scalar values specify an equidistant
## spacing.  Vector values for the @var{x}, @dots{} arguments specify the
## coordinate for that dimension.  The length must match their respective
## dimension of @var{m}.
##
## At boundary points a linear extrapolation is applied.  Interior points
## are calculated with the first approximation of the numerical gradient
##
## @example
## y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
## @end example
##
## If the first argument @var{f} is a function handle, the gradient of the
## function at the points in @var{x0} is approximated using central difference.
## For example, @code{gradient (@@cos, 0)} approximates the gradient of the
## cosine function in the point @math{x0 = 0}.  As with sampled data, the
## spacing values between the points from which the gradient is estimated can
## be set via the @var{s} or @var{dx}, @var{dy}, @dots{} arguments.  By default
## a spacing of 1 is used.
## @seealso{diff, del2}
## @end deftypefn

function varargout = gradient (m, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  nargout_with_ans = max (1,nargout);
  if (isnumeric (m))
    [varargout{1:nargout_with_ans}] = matrix_gradient (m, varargin{:});
  elseif (is_function_handle (m))
    [varargout{1:nargout_with_ans}] = handle_gradient (m, varargin{:});
  elseif (ischar (m))
    [varargout{1:nargout_with_ans}] = handle_gradient (str2func (m), ...
                                                       varargin{:});
  else
    error ("gradient: first input must be an array or a function");
  endif

endfunction

function varargout = matrix_gradient (m, varargin)

  transposed = false;
  if (isvector (m))
    ## make a row vector.
    transposed = (columns (m) == 1);
    m = m(:).';
  endif

  nd = ndims (m);
  sz = size (m);
  if (length (sz) > 1)
    tmp = sz(1); sz(1) = sz(2); sz(2) = tmp;
  endif

  if (nargin > 2 && nargin != nd + 1)
    print_usage ("gradient");
  endif

  ## cell d stores a spacing vector for each dimension
  d = cell (1, nd);
  if (nargin == 1)
    ## no spacing given - assume 1.0 for all dimensions
    for i = 1:nd
      d{i} = ones (sz(i) - 1, 1);
    endfor
  elseif (nargin == 2)
    if (isscalar (varargin{1}))
      ## single scalar value for all dimensions
      for i = 1:nd
        d{i} = varargin{1} * ones (sz(i) - 1, 1);
      endfor
    else
      ## vector for one-dimensional derivative
      d{1} = diff (varargin{1}(:));
    endif
  else
    ## have spacing value for each dimension
    if (length (varargin) != nd)
      error ("gradient: dimensions and number of spacing values do not match");
    endif
    for i = 1:nd
      if (isscalar (varargin{i}))
        d{i} = varargin{i} * ones (sz(i) - 1, 1);
      else
        d{i} = diff (varargin{i}(:));
      endif
    endfor
  endif

  m = shiftdim (m, 1);
  for i = 1:min (nd, nargout)
    mr = rows (m);
    mc = numel (m) / mr;
    Y = zeros (size (m), class (m));

    if (mr > 1)
      ## Top and bottom boundary.
      Y(1,:) = diff (m(1:2, :)) / d{i}(1);
      Y(mr,:) = diff (m(mr-1:mr, :) / d{i}(mr - 1));
    endif

    if (mr > 2)
      ## Interior points.
      Y(2:mr-1,:) = ((m(3:mr,:) - m(1:mr-2,:))
          ./ kron (d{i}(1:mr-2) + d{i}(2:mr-1), ones (1, mc)));
    endif

    ## turn multi-dimensional matrix in a way, that gradient
    ## along x-direction is calculated first then y, z, ...

    if (i == 1)
      varargout{i} = shiftdim (Y, nd - 1);
      m = shiftdim (m, nd - 1);
    elseif (i == 2)
      varargout{i} = Y;
      m = shiftdim (m, 2);
    else
      varargout{i} = shiftdim (Y, nd - i + 1);
      m = shiftdim (m, 1);
    endif
  endfor

  if (transposed)
    varargout{1} = varargout{1}.';
  endif

endfunction

function varargout = handle_gradient (f, p0, varargin)

  ## Input checking
  p0_size = size (p0);

  if (numel (p0_size) != 2)
    error ("gradient: the second input argument should either be a vector or a matrix");
  endif

  if (any (p0_size == 1))
    p0 = p0(:);
    dim = 1;
    num_points = numel (p0);
  else
    num_points = p0_size (1);
    dim = p0_size (2);
  endif

  if (length (varargin) == 0)
    delta = 1;
  elseif (length (varargin) == 1 || length (varargin) == dim)
    try
      delta = [varargin{:}];
    catch
      error ("gradient: spacing parameters must be scalars or a vector");
    end_try_catch
  else
    error ("gradient: incorrect number of spacing parameters");
  endif

  if (isscalar (delta))
    delta = repmat (delta, 1, dim);
  elseif (! isvector (delta))
    error ("gradient: spacing values must be scalars or a vector");
  endif

  ## Calculate the gradient
  p0 = mat2cell (p0, num_points, ones (1, dim));
  varargout = cell (1, dim);
  for d = 1:dim
    s = delta(d);
    df_dx = (f (p0{1:d-1}, p0{d}+s, p0{d+1:end})
           - f (p0{1:d-1}, p0{d}-s, p0{d+1:end})) ./ (2*s);
    if (dim == 1)
      varargout{d} = reshape (df_dx, p0_size);
    else
      varargout{d} = df_dx;
    endif
  endfor

endfunction


%!test
%! data = [1, 2, 4, 2];
%! dx = gradient (data);
%! dx2 = gradient (data, 0.25);
%! dx3 = gradient (data, [0.25, 0.5, 1, 3]);
%! assert (dx, [1, 3/2, 0, -2]);
%! assert (dx2, [4, 6, 0, -8]);
%! assert (dx3, [4, 4, 0, -1]);
%! assert (size_equal (data, dx));

%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X);
%! assert (all (dX(:) == 1));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));

%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X+j*X);
%! assert (all (dX(:) == 1+1j));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y-j*Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2-j*2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z+j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U-j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));

%!test
%! x = 0:10;
%! f = @cos;
%! df_dx = @(x) -sin (x);
%! assert (gradient (f, x), df_dx (x), 0.2);
%! assert (gradient (f, x, 0.5), df_dx (x), 0.1);

%!test
%! xy = reshape (1:10, 5, 2);
%! f = @(x,y) sin (x) .* cos (y);
%! df_dx = @(x, y) cos (x) .* cos (y);
%! df_dy = @(x, y) -sin (x) .* sin (y);
%! [dx, dy] = gradient (f, xy);
%! assert (dx, df_dx (xy (:, 1), xy (:, 2)), 0.1);
%! assert (dy, df_dy (xy (:, 1), xy (:, 2)), 0.1);