view scripts/general/interp2.m @ 29949:f254c302bb9c

remove JIT compiler from Octave sources As stated in the NEWS file entry added with this changeset, no one has ever seriously taken on further development of the JIT compiler in Octave since it was first added as part of a Google Summer of Code project in 2012 and it still does nothing significant. It is out of date with the default interpreter that walks the parse tree. Even though we have fixed the configure script to disable it by default, people still ask questions about how to build it, but it doesn’t seem that they are doing that to work on it but because they think it will make Octave code run faster (it never did, except for some extremely simple bits of code as examples for demonstration purposes only). * NEWS: Note change. * configure.ac, acinclude.m4: Eliminate checks and macros related to the JIT compiler and LLVM. * basics.txi, install.txi, octave.texi, vectorize.txi: Remove mention of JIT compiler and LLVM. * jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, pt-jit.cc, pt-jit.h: Delete. * libinterp/parse-tree/module.mk: Update. * Array-jit.cc: Delete. * libinterp/template-inst/module.mk: Update. * test/jit.tst: Delete. * test/module.mk: Update. * interpreter.cc (interpreter::interpreter): Don't check options for debug_jit or jit_compiler. * toplev.cc (F__octave_config_info__): Remove JIT compiler and LLVM info from struct. * ov-base.h (octave_base_value::grab, octave_base_value::release): Delete. * ov-builtin.h, ov-builtin.cc (octave_builtin::to_jit, octave_builtin::stash_jit): Delete. (octave_builtin::m_jtype): Delete data member and all uses. * ov-usr-fcn.h, ov-usr-fcn.cc (octave_user_function::m_jit_info): Delete data member and all uses. (octave_user_function::get_info, octave_user_function::stash_info): Delete. * options.h (DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete macro definitions and all uses. * octave.h, octave.cc (cmdline_options::cmdline_options): Don't handle DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete. (cmdline_options::debug_jit, cmdline_options::jit_compiler): Delete functions and all uses. (cmdline_options::m_debug_jit, cmdline_options::m_jit_compiler): Delete data members and all uses. (octave_getopt_options long_opts): Remove "debug-jit" and "jit-compiler" from the list. * pt-eval.cc (tree_evaluator::visit_simple_for_command, tree_evaluator::visit_complex_for_command, tree_evaluator::visit_while_command, tree_evaluator::execute_user_function): Eliminate JIT compiler code. * pt-loop.h, pt-loop.cc (tree_while_command::get_info, tree_while_command::stash_info, tree_simple_for_command::get_info, tree_simple_for_command::stash_info): Delete functions and all uses. (tree_while_command::m_compiled, tree_simple_for_command::m_compiled): Delete member variable and all uses. * usage.h (usage_string, octave_print_verbose_usage_and_exit): Remove [--debug-jit] and [--jit-compiler] from the message. * Array.h (Array<T>::Array): Remove constructor that was only intended to be used by the JIT compiler. (Array<T>::jit_ref_count, Array<T>::jit_slice_data, Array<T>::jit_dimensions, Array<T>::jit_array_rep): Delete. * Marray.h (MArray<T>::MArray): Remove constructor that was only intended to be used by the JIT compiler. * NDArray.h (NDArray::NDarray): Remove constructor that was only intended to be used by the JIT compiler. * dim-vector.h (dim_vector::to_jit): Delete. (dim_vector::dim_vector): Remove constructor that was only intended to be used by the JIT compiler. * codeql-analysis.yaml, make.yaml: Don't require llvm-dev. * subst-config-vals.in.sh, subst-cross-config-vals.in.sh: Don't substitute OCTAVE_CONF_LLVM_CPPFLAGS, OCTAVE_CONF_LLVM_LDFLAGS, or OCTAVE_CONF_LLVM_LIBS. * Doxyfile.in: Don't define HAVE_LLVM. * aspell-octave.en.pws: Eliminate jit, JIT, and LLVM from the list of spelling exceptions. * build-env.h, build-env.in.cc (LLVM_CPPFLAGS, LLVM_LDFLAGS, LLVM_LIBS): Delete variables and all uses. * libinterp/corefcn/module.mk (%canon_reldir%_libcorefcn_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list. * libinterp/parse-tree/module.mk (%canon_reldir%_libparse_tree_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list.
author John W. Eaton <jwe@octave.org>
date Tue, 10 Aug 2021 16:42:29 -0400
parents 7854d5752dd2
children 01de0045b2e3
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2021 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{zi} =} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
## @deftypefnx {} {@var{zi} =} interp2 (@var{z}, @var{xi}, @var{yi})
## @deftypefnx {} {@var{zi} =} interp2 (@var{z}, @var{n})
## @deftypefnx {} {@var{zi} =} interp2 (@var{z})
## @deftypefnx {} {@var{zi} =} interp2 (@dots{}, @var{method})
## @deftypefnx {} {@var{zi} =} interp2 (@dots{}, @var{method}, @var{extrap})
##
## Two-dimensional interpolation.
##
## Interpolate reference data @var{x}, @var{y}, @var{z} to determine @var{zi}
## at the coordinates @var{xi}, @var{yi}.  The reference data @var{x}, @var{y}
## can be matrices, as returned by @code{meshgrid}, in which case the sizes of
## @var{x}, @var{y}, and @var{z} must be equal.  If @var{x}, @var{y} are
## vectors describing a grid then @code{length (@var{x}) == columns (@var{z})}
## and @code{length (@var{y}) == rows (@var{z})}.  In either case the input
## data must be strictly monotonic.
##
## If called without @var{x}, @var{y}, and just a single reference data matrix
## @var{z}, the 2-D region
## @code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})} is assumed.
## This saves memory if the grid is regular and the distance between points is
## not important.
##
## If called with a single reference data matrix @var{z} and a refinement
## value @var{n}, then perform interpolation over a grid where each original
## interval has been recursively subdivided @var{n} times.  This results in
## @code{2^@var{n}-1} additional points for every interval in the original
## grid.  If @var{n} is omitted a value of 1 is used.  As an example, the
## interval [0,1] with @code{@var{n}==2} results in a refined interval with
## points at [0, 1/4, 1/2, 3/4, 1].
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative.
##
## @item @qcode{"cubic"}
## Cubic interpolation (same as @qcode{"pchip"}).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## @var{extrap} is a scalar number.  It replaces values beyond the endpoints
## with @var{extrap}.  Note that if @var{extrap} is used, @var{method} must
## be specified as well.  If @var{extrap} is omitted and the @var{method} is
## @qcode{"spline"}, then the extrapolated values of the @qcode{"spline"} are
## used.  Otherwise the default @var{extrap} value for any other @var{method}
## is @qcode{"NA"}.
## @seealso{interp1, interp3, interpn, meshgrid}
## @end deftypefn

function ZI = interp2 (varargin)

  narginchk (1, 7);
  nargs = nargin;

  Z = X = Y = XI = YI = n = [];
  method = "linear";
  extrap = [];

  ## Check for method and extrap
  if (nargs > 1 && ischar (varargin{end-1}))
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interp2: EXTRAP must be a numeric scalar");
    endif
    extrap = varargin{end};
    method = varargin{end-1};
    nargs -= 2;
  elseif (ischar (varargin{end}))
    method = varargin{end};
    nargs -= 1;
  endif
  if (method(1) == "*")
    warning ("interp2: ignoring unsupported '*' flag to METHOD");
    method(1) = [];
  endif
  method = validatestring (method, ...
                           {"nearest", "linear", "pchip", "cubic", "spline"});

  ## Read numeric input
  switch (nargs)
    case 1
      Z = varargin{1};
      n = 1;
    case 2
      [Z, n] = deal (varargin{1:nargs});
    case 3
      [Z, XI, YI] = deal (varargin{1:nargs});
    case 5
      [X, Y, Z, XI, YI] = deal (varargin{1:nargs});
    otherwise
      print_usage ();
  endswitch

  ## Type checking
  if (! isnumeric (Z) || isscalar (Z) || ! ismatrix (Z))
    error ("interp2: Z must be a 2-D matrix");
  endif
  if (! isempty (n) && ! (isscalar (n) && n >= 0 && n == fix (n)))
    error ("interp2: N must be an integer >= 0");
  endif

  ## Define X, Y, XI, YI if needed
  [zr, zc] = size (Z);
  if (isempty (X))
    X = 1:zc;
    Y = 1:zr;
  endif
  if (! isnumeric (X) || ! isnumeric (Y))
    error ("interp2: X, Y must be numeric matrices");
  endif
  if (! isempty (n))
    ## Calculate the interleaved input vectors.
    p = 2^n;
    XI = (p:p*zc)/p;
    YI = (p:p*zr)'/p;
  endif
  if (! isnumeric (XI) || ! isnumeric (YI))
    error ("interp2: XI, YI must be numeric");
  endif

  if (isvector (X) && isvector (Y))
    X = X(:);  Y = Y(:);
  elseif (size_equal (X, Y))
    X = X(1,:).';  Y = Y(:,1);
  else
    error ("interp2: X and Y must be matrices of equal size");
  endif
  if (columns (Z) != length (X) || rows (Z) != length (Y))
    error ("interp2: X and Y size must match the dimensions of Z");
  endif
  dx = diff (X);
  if (all (dx < 0))
    X = flipud (X);
    Z = fliplr (Z);
  elseif (any (dx <= 0))
    error ("interp2: X must be strictly monotonic");
  endif
  dy = diff (Y);
  if (all (dy < 0))
    Y = flipud (Y);
    Z = flipud (Z);
  elseif (any (dy <= 0))
    error ("interp2: Y must be strictly monotonic");
  endif

  if (any (strcmp (method, {"nearest", "linear", "pchip", "cubic"})))

    ## If Xi and Yi are vectors of different orientation build a grid
    if ((isrow (XI) && iscolumn (YI)) || (iscolumn (XI) && isrow (YI)))
      [XI, YI] = meshgrid (XI, YI);
    elseif (! size_equal (XI, YI))
      error ("interp2: XI and YI must be matrices of equal size");
    endif

    ## if XI, YI are vectors, X and Y should share their orientation.
    if (isrow (XI))
      if (rows (X) != 1)
        X = X.';
      endif
      if (rows (Y) != 1)
        Y = Y.';
      endif
    elseif (iscolumn (XI))
      if (columns (X) != 1)
        X = X.';
      endif
      if (columns (Y) != 1)
        Y = Y.';
      endif
    endif

    xidx = lookup (X, XI, "lr");
    yidx = lookup (Y, YI, "lr");

    if (strcmp (method, "linear"))
      ## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy
      ##
      ## a-b
      ## | |
      ## c-d
      a = Z(1:(zr - 1), 1:(zc - 1));
      b = Z(1:(zr - 1), 2:zc) - a;
      c = Z(2:zr, 1:(zc - 1)) - a;
      d = Z(2:zr, 2:zc) - a - b - c;

      ## scale XI, YI values to a 1-spaced grid
      Xsc = (XI - X(xidx)) ./ (diff (X)(xidx));
      Ysc = (YI - Y(yidx)) ./ (diff (Y)(yidx));

      ## Get 2D index.
      idx = sub2ind (size (a), yidx, xidx);
      ## Dispose of the 1D indices at this point to save memory.
      clear xidx yidx;

      ## Apply plane equation
      ## Handle case where idx and coefficients are both vectors and resulting
      ## coeff(idx) follows orientation of coeff, rather than that of idx.
      forient = @(x) reshape (x, size (idx));
      ZI =   forient (a(idx))        ...
           + forient (b(idx)) .* Xsc ...
           + forient (c(idx)) .* Ysc ...
           + forient (d(idx)) .* Xsc.*Ysc;

    elseif (strcmp (method, "nearest"))
      ii = (XI - X(xidx) >= X(xidx + 1) - XI);
      jj = (YI - Y(yidx) >= Y(yidx + 1) - YI);
      idx = sub2ind (size (Z), yidx+jj, xidx+ii);
      ZI = Z(idx);

    elseif (strcmp (method, "pchip") || strcmp (method, "cubic"))

      if (length (X) < 2 || length (Y) < 2)
        error ("interp2: %s requires at least 2 points in each dimension",
               method);
      endif

      ## first order derivatives
      DX = __pchip_deriv__ (X, Z, 2);
      DY = __pchip_deriv__ (Y, Z, 1);
      ## Compute mixed derivatives row-wise and column-wise, use the average.
      DXY = (__pchip_deriv__ (X, DY, 2) + __pchip_deriv__ (Y, DX, 1))/2;

      ## do the bicubic interpolation
      hx = diff (X); hx = hx(xidx);
      hy = diff (Y); hy = hy(yidx);

      tx = (XI - X(xidx)) ./ hx;
      ty = (YI - Y(yidx)) ./ hy;

      ## construct the cubic hermite base functions in x, y

      ## formulas:
      ## b{1,1} =    ( 2*t.^3 - 3*t.^2     + 1);
      ## b{2,1} = h.*(   t.^3 - 2*t.^2 + t    );
      ## b{1,2} =    (-2*t.^3 + 3*t.^2        );
      ## b{2,2} = h.*(   t.^3 -   t.^2        );

      ## optimized equivalents of the above:
      t1 = tx.^2;
      t2 = tx.*t1 - t1;
      xb{2,2} = hx.*t2;
      t1 = t2 - t1;
      xb{2,1} = hx.*(t1 + tx);
      t2 += t1;
      xb{1,2} = -t2;
      xb{1,1} = t2 + 1;

      t1 = ty.^2;
      t2 = ty.*t1 - t1;
      yb{2,2} = hy.*t2;
      t1 = t2 - t1;
      yb{2,1} = hy.*(t1 + ty);
      t2 += t1;
      yb{1,2} = -t2;
      yb{1,1} = t2 + 1;

      ZI = zeros (size (XI));
      for i = 1:2
        for j = 1:2
          zidx = sub2ind (size (Z), yidx+(j-1), xidx+(i-1));
          ZI += xb{1,i} .* yb{1,j} .*   Z(zidx);
          ZI += xb{2,i} .* yb{1,j} .*  DX(zidx);
          ZI += xb{1,i} .* yb{2,j} .*  DY(zidx);
          ZI += xb{2,i} .* yb{2,j} .* DXY(zidx);
        endfor
      endfor

    endif

  else

    ## Check dimensions of XI and YI
    if (isvector (XI) && isvector (YI) && ! size_equal (XI, YI))
      XI = XI(:).';  YI = YI(:);
    elseif (! size_equal (XI, YI))
      error ("interp2: XI and YI must be matrices of equal size");
    endif

    if (strcmp (method, "spline"))
      if (isgriddata (XI) && isgriddata (YI'))
        ZI = __splinen__ ({Y, X}, Z, {YI(:,1), XI(1,:)}, extrap, "spline");
      else
        error ("interp2: XI, YI must have uniform spacing ('meshgrid' format)");
      endif
    endif

    return; # spline doesn't need NA extrapolation value (MATLAB compatibility)

  endif

  ## extrapolation 'extrap'
  if (isempty (extrap))
    extrap = NA;
  endif

  if (X(1) < X(end))
    if (Y(1) < Y(end))
      ZI(XI < X(1,1) | XI > X(end) | YI < Y(1,1) | YI > Y(end)) = extrap;
    else
      ZI(XI < X(1) | XI > X(end) | YI < Y(end) | YI > Y(1)) = extrap;
    endif
  else
    if (Y(1) < Y(end))
      ZI(XI < X(end) | XI > X(1) | YI < Y(1) | YI > Y(end)) = extrap;
    else
      ZI(XI < X(1,end) | XI > X(1) | YI < Y(end) | YI > Y(1)) = extrap;
    endif
  endif

endfunction

function b = isgriddata (X)
  d1 = diff (X, 1, 1);
  b = ! any (d1(:) != 0);
endfunction


%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "linear"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "linear"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "nearest"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "nearest"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

## 'pchip' commented out since it is the same as 'cubic'
%!#demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "pchip"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

## 'pchip' commented out since it is the same as 'cubic'
%!#demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "pchip"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "cubic"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "cubic"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "spline"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "spline"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!test  # simple test
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x, y);
%! orig = X.^2 + Y.^3;
%! xi = [1.2,2, 1.5];
%! yi = [6.2, 4.0, 5.0]';
%!
%! expected = ...
%!   [243,   245.4,  243.9;
%!     65.6,  68,     66.5;
%!    126.6, 129,    127.5];
%! result = interp2 (x,y,orig, xi, yi);
%!
%! assert (result, expected, 1000*eps);

%!test  # 2^n refinement form
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x, y);
%! orig = X.^2 + Y.^3;
%! xi = [1:0.25:3];  yi = [4:0.25:7]';
%! expected = interp2 (x,y,orig, xi, yi);
%! result = interp2 (orig, 2);
%!
%! assert (result, expected, 10*eps);

%!test  # matrix slice
%! A = eye (4);
%! assert (interp2 (A,[1:4],[1:4]), [1,1,1,1]);

%!test  # non-gridded XI,YI
%! A = eye (4);
%! assert (interp2 (A,[1,2;3,4],[1,3;2,4]), [1,0;0,1]);

%!test  # for values outside of boundaries
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x,y);
%! orig = X.^2 + Y.^3;
%! xi = [0,4];
%! yi = [3,8]';
%! assert (interp2 (x,y,orig, xi, yi), [NA,NA;NA,NA]);
%! assert (interp2 (x,y,orig, xi, yi,"linear", 0), [0,0;0,0]);
%! assert (interp2 (x,y,orig, xi, yi,"linear", 2), [2,2;2,2]);
%! assert (interp2 (x,y,orig, xi, yi,"spline", 2), [2,2;2,2]);
%! assert (interp2 (x,y,orig, xi, yi,"linear", 0+1i), [0+1i,0+1i;0+1i,0+1i]);
%! assert (interp2 (x,y,orig, xi, yi,"spline"), [27,43;512,528]);

%!test  # for values at boundaries
%! A = [1,2;3,4];
%! x = [0,1];
%! y = [2,3]';
%! assert (interp2 (x,y,A,x,y,"linear"), A);
%! assert (interp2 (x,y,A,x,y,"nearest"), A);

%!test  # for Matlab-compatible rounding for 'nearest'
%! X = meshgrid (1:4);
%! assert (interp2 (X, 2.5, 2.5, "nearest"), 3);

## re-order monotonically decreasing
%!assert <*41838> (interp2 ([1 2 3], [3 2 1], magic (3), 2.5, 3), 3.5)
%!assert <*41838> (interp2 ([3 2 1], [1 2 3], magic (3), 1.5, 1), 3.5)

## Linear interpretation with vector XI doesn't lead to matrix output
%!assert <*49506> (interp2 ([2 3], [2 3 4], [1 2; 3 4; 5 6], [2 3], 3, "linear"), [3 4])

%!shared z, zout, tol
%! z = [1 3 5; 3 5 7; 5 7 9];
%! zout = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8; 5 6 7 8 9];
%! tol = 2 * eps;
%!
%!assert (interp2 (z), zout, tol)
%!assert (interp2 (z, "linear"), zout, tol)
%!assert (interp2 (z, "pchip"), zout, tol)
%!assert (interp2 (z, "cubic"), zout, 10 * tol)
%!assert (interp2 (z, "spline"), zout, tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "linear"), repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "pchip"), repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "cubic"), repmat ([5, 7, 3], [3, 1]), 10 * tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "spline"), repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "linear"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "pchip"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "cubic"), [5 7 3], 10 * tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "spline"), [5 7 3], tol)

## Test input validation
%!error interp2 (1, 1, 1, 1, 1, 2)    # only 5 numeric inputs
%!error interp2 (1, 1, 1, 1, 1, 2, 2) # only 5 numeric inputs
%!error <Z must be a 2-D matrix> interp2 ({1})
%!error <Z must be a 2-D matrix> interp2 (1,1,1)
%!error <Z must be a 2-D matrix> interp2 (ones (2,2,2))
%!error <N must be an integer .= 0> interp2 (ones (2), ones (2))
%!error <N must be an integer .= 0> interp2 (ones (2), -1)
%!error <N must be an integer .= 0> interp2 (ones (2), 1.5)
%!warning <ignoring unsupported '\*' flag> interp2 (rand (3,3), 1, "*linear");
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, 'linear', {1})
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, 'linear', ones (2,2))
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, 'linear', "abc")
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, 'linear', "extrap")
%!error <X, Y must be numeric matrices> interp2 ({1}, 1, ones (2), 1, 1)
%!error <X, Y must be numeric matrices> interp2 (1, {1}, ones (2), 1, 1)
%!error <XI, YI must be numeric> interp2 (1, 1, ones (2), {1}, 1)
%!error <XI, YI must be numeric> interp2 (1, 1, ones (2), 1, {1})
%!error <X and Y must be matrices of equal size> interp2 (ones (2,2), 1, ones (2), 1, 1)
%!error <X and Y must be matrices of equal size> interp2 (ones (2,2), ones (2,3), ones (2), 1, 1)
%!error <X and Y size must match the dimensions of Z> interp2 (1:3, 1:3, ones (3,2), 1, 1)
%!error <X and Y size must match the dimensions of Z> interp2 (1:2, 1:2, ones (3,2), 1, 1)
%!error <X must be strictly monotonic> interp2 ([1 0 2], 1:3, ones (3,3), 1, 1)
%!error <Y must be strictly monotonic> interp2 (1:3, [1 0 2], ones (3,3), 1, 1)
%!error <XI and YI must be matrices of equal size> interp2 (1:2, 1:2, ones (2), ones (2,2), 1)
%!error <XI and YI must be matrices of equal size> interp2 (1:2, 1:2, ones (2), 1, ones (2,2))
%!error <XI, YI must have uniform spacing> interp2 (1:2, 1:2, ones (2), [1 2 4], [1 2 3], "spline")
%!error <XI, YI must have uniform spacing> interp2 (1:2, 1:2, ones (2), [1 2 3], [1 2 4], "spline")
%!error interp2 (1, 1, 1, 1, 1, "foobar")