view scripts/general/rat.m @ 29949:f254c302bb9c

remove JIT compiler from Octave sources As stated in the NEWS file entry added with this changeset, no one has ever seriously taken on further development of the JIT compiler in Octave since it was first added as part of a Google Summer of Code project in 2012 and it still does nothing significant. It is out of date with the default interpreter that walks the parse tree. Even though we have fixed the configure script to disable it by default, people still ask questions about how to build it, but it doesn’t seem that they are doing that to work on it but because they think it will make Octave code run faster (it never did, except for some extremely simple bits of code as examples for demonstration purposes only). * NEWS: Note change. * configure.ac, acinclude.m4: Eliminate checks and macros related to the JIT compiler and LLVM. * basics.txi, install.txi, octave.texi, vectorize.txi: Remove mention of JIT compiler and LLVM. * jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, pt-jit.cc, pt-jit.h: Delete. * libinterp/parse-tree/module.mk: Update. * Array-jit.cc: Delete. * libinterp/template-inst/module.mk: Update. * test/jit.tst: Delete. * test/module.mk: Update. * interpreter.cc (interpreter::interpreter): Don't check options for debug_jit or jit_compiler. * toplev.cc (F__octave_config_info__): Remove JIT compiler and LLVM info from struct. * ov-base.h (octave_base_value::grab, octave_base_value::release): Delete. * ov-builtin.h, ov-builtin.cc (octave_builtin::to_jit, octave_builtin::stash_jit): Delete. (octave_builtin::m_jtype): Delete data member and all uses. * ov-usr-fcn.h, ov-usr-fcn.cc (octave_user_function::m_jit_info): Delete data member and all uses. (octave_user_function::get_info, octave_user_function::stash_info): Delete. * options.h (DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete macro definitions and all uses. * octave.h, octave.cc (cmdline_options::cmdline_options): Don't handle DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete. (cmdline_options::debug_jit, cmdline_options::jit_compiler): Delete functions and all uses. (cmdline_options::m_debug_jit, cmdline_options::m_jit_compiler): Delete data members and all uses. (octave_getopt_options long_opts): Remove "debug-jit" and "jit-compiler" from the list. * pt-eval.cc (tree_evaluator::visit_simple_for_command, tree_evaluator::visit_complex_for_command, tree_evaluator::visit_while_command, tree_evaluator::execute_user_function): Eliminate JIT compiler code. * pt-loop.h, pt-loop.cc (tree_while_command::get_info, tree_while_command::stash_info, tree_simple_for_command::get_info, tree_simple_for_command::stash_info): Delete functions and all uses. (tree_while_command::m_compiled, tree_simple_for_command::m_compiled): Delete member variable and all uses. * usage.h (usage_string, octave_print_verbose_usage_and_exit): Remove [--debug-jit] and [--jit-compiler] from the message. * Array.h (Array<T>::Array): Remove constructor that was only intended to be used by the JIT compiler. (Array<T>::jit_ref_count, Array<T>::jit_slice_data, Array<T>::jit_dimensions, Array<T>::jit_array_rep): Delete. * Marray.h (MArray<T>::MArray): Remove constructor that was only intended to be used by the JIT compiler. * NDArray.h (NDArray::NDarray): Remove constructor that was only intended to be used by the JIT compiler. * dim-vector.h (dim_vector::to_jit): Delete. (dim_vector::dim_vector): Remove constructor that was only intended to be used by the JIT compiler. * codeql-analysis.yaml, make.yaml: Don't require llvm-dev. * subst-config-vals.in.sh, subst-cross-config-vals.in.sh: Don't substitute OCTAVE_CONF_LLVM_CPPFLAGS, OCTAVE_CONF_LLVM_LDFLAGS, or OCTAVE_CONF_LLVM_LIBS. * Doxyfile.in: Don't define HAVE_LLVM. * aspell-octave.en.pws: Eliminate jit, JIT, and LLVM from the list of spelling exceptions. * build-env.h, build-env.in.cc (LLVM_CPPFLAGS, LLVM_LDFLAGS, LLVM_LIBS): Delete variables and all uses. * libinterp/corefcn/module.mk (%canon_reldir%_libcorefcn_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list. * libinterp/parse-tree/module.mk (%canon_reldir%_libparse_tree_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list.
author John W. Eaton <jwe@octave.org>
date Tue, 10 Aug 2021 16:42:29 -0400
parents 7854d5752dd2
children 796f54d4ddbf
line wrap: on
line source

########################################################################
##
## Copyright (C) 2001-2021 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{s} =} rat (@var{x})
## @deftypefnx {} {@var{s} =} rat (@var{x}, @var{tol})
## @deftypefnx {} {[@var{n}, @var{d}] =} rat (@dots{})
##
## Find a rational approximation of @var{x} to within the tolerance defined by
## @var{tol}.
##
## If unspecified, the default tolerance is @code{1e-6 * norm (@var{x}(:), 1)}.
##
## When called with one output argument, return a string containing a
## continued fraction expansion (multiple terms).
##
## When called with two output arguments, return numeric matrices for the
## numerator and denominator of a fractional representation of @var{x} such
## that @code{@var{x} = @var{n} ./ @var{d}}.
##
## For example:
##
## @example
## @group
## s = rat (pi)
## @result{} s = 3 + 1/(7 + 1/16)
##
## [n, d] = rat (pi)
## @result{} n =  355
## @result{} d =  113
##
## n / d - pi
## @result{} 0.00000026676
## @end group
## @end example
##
## Programming Note: With one output @code{rat} produces a string which is a
## continued fraction expansion.  To produce a string which is a simple
## fraction (one numerator, one denominator) use @code{rats}.
##
## @seealso{rats, format}
## @end deftypefn

function [n, d] = rat (x, tol)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isfloat (x))
    error ("rat: X must be a single or double array");
  endif

  ## FIXME: This test should be removed when complex support is added.
  ##        See bug #55198.
  if (iscomplex (x))
    error ("rat: X must be a real, not complex, array");
  endif

  y = x(:);

  ## Replace Inf with 0 while calculating ratios.
  inf_idx = isinf (x);
  y(inf_idx(:)) = 0;

  if (nargin == 1)
    ## default norm
    tol = 1e-6 * norm (y, 1);
  else
    if (! (isscalar (tol) && isnumeric (tol) && tol > 0))
      error ("rat: TOL must be a numeric scalar > 0");
    endif
  endif

  ## First step in the approximation is the integer portion

  ## First element in the continued fraction.
  n = round (y);
  d = ones (size (y));
  frac = y - n;
  lastn = ones (size (y));
  lastd = zeros (size (y));

  nsz = numel (y);
  steps = zeros ([nsz, 0]);

  ## Grab new factors until all continued fractions converge.
  while (1)
    ## Determine which fractions have not yet converged.
    idx = find (y != 0 & abs (y - n./d) >= tol);
    if (isempty (idx))
      if (isempty (steps))
        steps = NaN (nsz, 1);
      endif
      break;
    endif

    ## Grab the next step in the continued fraction.
    flip = 1 ./ frac(idx);
    ## Next element in the continued fraction.
    step = round (flip);

    if (nargout < 2)
      tsteps = NaN (nsz, 1);
      tsteps(idx) = step;
      steps = [steps, tsteps];
    endif

    frac(idx) = flip - step;

    ## Update the numerator/denominator.
    savedn = n;
    savedd = d;
    n(idx) = n(idx).*step + lastn(idx);
    d(idx) = d(idx).*step + lastd(idx);
    lastn = savedn;
    lastd = savedd;
  endwhile

  if (nargout <= 1)
    ## string output
    n = "";
    nsteps = columns (steps);
    ## Loop over all values in array
    for i = 1:nsz

      if (inf_idx(i))
        s = ifelse (x(i) > 0, "Inf", "-Inf");
      elseif (y(i) == 0)
        s = "0";
      else
        ## Create partial fraction expansion of one value
        s = [int2str(y(i)), " "];
        j = 1;

        while (true)
          step = steps(i, j++);
          if (isnan (step))
            break;
          endif
          if (j > nsteps || isnan (steps(i, j)))
            if (step < 0)
              s = [s(1:end-1), " + 1/(", int2str(step), ")"];
            else
              s = [s(1:end-1), " + 1/", int2str(step)];
            endif
            break;
          else
            s = [s(1:end-1), " + 1/(", int2str(step), ")"];
          endif
        endwhile
        s = [s, repmat(")", 1, j-2)];
      endif

      ## Append result to output
      n_nc = columns (n);
      s_nc = columns (s);
      if (n_nc > s_nc)
        s(:, s_nc+1:n_nc) = " ";
      elseif (s_nc > n_nc && n_nc != 0)
        n(:, n_nc+1:s_nc) = " ";
      endif
      n = cat (1, n, s);
    endfor
  else
    ## numerator, denominator output

    ## Move the minus sign to the numerator.
    n .*= sign (d);
    d = abs (d);

    ## Return the same shape as the input.
    n = reshape (n, size (x));
    d = reshape (d, size (x));

    ## Use 1/0 for Inf.
    n(inf_idx) = sign (x(inf_idx));
    d(inf_idx) = 0;
  endif

endfunction


%!assert (rat (pi), "3 + 1/(7 + 1/16)")
%!assert (rat (pi, 1e-2), "3 + 1/7")
## Test exceptional values
%!assert (rat (0), "0")
%!assert (rat (Inf), "Inf")
%!assert (rat (-Inf), "-Inf")

%!test
%! [n, d] = rat ([0.5, 0.3, 1/3]);
%! assert (n, [1, 3, 1]);
%! assert (d, [2, 10, 3]);
## Test exceptional values
%!test
%! [n, d] = rat ([Inf, 0, -Inf]);
%! assert (n, [1, 0, -1]);
%! assert (d, [0, 1, 0]);

%!assert <*43374> (eval (rat (0.75)), [0.75])

## Test input validation
%!error <Invalid call> rat ()
%!error <X must be a single or double array> rat (int8 (3))
%!error <X must be a real, not complex, array> rat (1+1i)
%!error <TOL must be a numeric scalar> rat (1, "a")
%!error <TOL must be a numeric scalar> rat (1, [1 2])
%!error <TOL must be a numeric scalar . 0> rat (1, -1)