view scripts/specfun/betainc.m @ 29949:f254c302bb9c

remove JIT compiler from Octave sources As stated in the NEWS file entry added with this changeset, no one has ever seriously taken on further development of the JIT compiler in Octave since it was first added as part of a Google Summer of Code project in 2012 and it still does nothing significant. It is out of date with the default interpreter that walks the parse tree. Even though we have fixed the configure script to disable it by default, people still ask questions about how to build it, but it doesn’t seem that they are doing that to work on it but because they think it will make Octave code run faster (it never did, except for some extremely simple bits of code as examples for demonstration purposes only). * NEWS: Note change. * configure.ac, acinclude.m4: Eliminate checks and macros related to the JIT compiler and LLVM. * basics.txi, install.txi, octave.texi, vectorize.txi: Remove mention of JIT compiler and LLVM. * jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, pt-jit.cc, pt-jit.h: Delete. * libinterp/parse-tree/module.mk: Update. * Array-jit.cc: Delete. * libinterp/template-inst/module.mk: Update. * test/jit.tst: Delete. * test/module.mk: Update. * interpreter.cc (interpreter::interpreter): Don't check options for debug_jit or jit_compiler. * toplev.cc (F__octave_config_info__): Remove JIT compiler and LLVM info from struct. * ov-base.h (octave_base_value::grab, octave_base_value::release): Delete. * ov-builtin.h, ov-builtin.cc (octave_builtin::to_jit, octave_builtin::stash_jit): Delete. (octave_builtin::m_jtype): Delete data member and all uses. * ov-usr-fcn.h, ov-usr-fcn.cc (octave_user_function::m_jit_info): Delete data member and all uses. (octave_user_function::get_info, octave_user_function::stash_info): Delete. * options.h (DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete macro definitions and all uses. * octave.h, octave.cc (cmdline_options::cmdline_options): Don't handle DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete. (cmdline_options::debug_jit, cmdline_options::jit_compiler): Delete functions and all uses. (cmdline_options::m_debug_jit, cmdline_options::m_jit_compiler): Delete data members and all uses. (octave_getopt_options long_opts): Remove "debug-jit" and "jit-compiler" from the list. * pt-eval.cc (tree_evaluator::visit_simple_for_command, tree_evaluator::visit_complex_for_command, tree_evaluator::visit_while_command, tree_evaluator::execute_user_function): Eliminate JIT compiler code. * pt-loop.h, pt-loop.cc (tree_while_command::get_info, tree_while_command::stash_info, tree_simple_for_command::get_info, tree_simple_for_command::stash_info): Delete functions and all uses. (tree_while_command::m_compiled, tree_simple_for_command::m_compiled): Delete member variable and all uses. * usage.h (usage_string, octave_print_verbose_usage_and_exit): Remove [--debug-jit] and [--jit-compiler] from the message. * Array.h (Array<T>::Array): Remove constructor that was only intended to be used by the JIT compiler. (Array<T>::jit_ref_count, Array<T>::jit_slice_data, Array<T>::jit_dimensions, Array<T>::jit_array_rep): Delete. * Marray.h (MArray<T>::MArray): Remove constructor that was only intended to be used by the JIT compiler. * NDArray.h (NDArray::NDarray): Remove constructor that was only intended to be used by the JIT compiler. * dim-vector.h (dim_vector::to_jit): Delete. (dim_vector::dim_vector): Remove constructor that was only intended to be used by the JIT compiler. * codeql-analysis.yaml, make.yaml: Don't require llvm-dev. * subst-config-vals.in.sh, subst-cross-config-vals.in.sh: Don't substitute OCTAVE_CONF_LLVM_CPPFLAGS, OCTAVE_CONF_LLVM_LDFLAGS, or OCTAVE_CONF_LLVM_LIBS. * Doxyfile.in: Don't define HAVE_LLVM. * aspell-octave.en.pws: Eliminate jit, JIT, and LLVM from the list of spelling exceptions. * build-env.h, build-env.in.cc (LLVM_CPPFLAGS, LLVM_LDFLAGS, LLVM_LIBS): Delete variables and all uses. * libinterp/corefcn/module.mk (%canon_reldir%_libcorefcn_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list. * libinterp/parse-tree/module.mk (%canon_reldir%_libparse_tree_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list.
author John W. Eaton <jwe@octave.org>
date Tue, 10 Aug 2021 16:42:29 -0400
parents 5f37ef6e7114
children ad6a57b215e8
line wrap: on
line source

########################################################################
##
## Copyright (C) 2018-2021 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} betainc (@var{x}, @var{a}, @var{b})
## @deftypefnx {} {} betainc (@var{x}, @var{a}, @var{b}, @var{tail})
## Compute the incomplete beta function.
##
## This is defined as
## @tex
## $$
## I_x (a, b) = {1 \over {B(a,b)}} \displaystyle{\int_0^x t^{a-1} (1-t)^{b-1} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                           x
##                          /
##                  1       |
## I_x (a, b) = ----------  | t^(a-1) (1-t)^(b-1) dt
##              beta (a,b)  |
##                          /
##                         0
## @end group
## @end example
##
## @end ifnottex
##
## with real @var{x} in the range [0,1].  The inputs @var{a} and @var{b} must
## be real and strictly positive (> 0).  If one of the inputs is not a scalar
## then the other inputs must be scalar or of compatible dimensions.
##
## By default, @var{tail} is @qcode{"lower"} and the incomplete beta function
## integrated from 0 to @var{x} is computed.  If @var{tail} is @qcode{"upper"}
## then the complementary function integrated from @var{x} to 1 is calculated.
## The two choices are related by
##
## betainc (@var{x}, @var{a}, @var{b}, @qcode{"upper"}) =
## 1 - betainc (@var{x}, @var{a}, @var{b}, @qcode{"lower"}).
##
## @code{betainc} uses a more sophisticated algorithm than subtraction to
## get numerically accurate results when the @qcode{"lower"} value is small.
##
## Reference: @nospell{A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland,
## W.B. Jones}, @cite{Handbook of Continued Fractions for Special Functions},
## ch.@: 18.
##
## @seealso{beta, betaincinv, betaln}
## @end deftypefn

function y = betainc (x, a, b, tail = "lower")

  if (nargin < 3)
    print_usage ();
  endif

  [err, x, a, b] = common_size (x, a, b);
  if (err > 0)
    error ("betainc: X, A, and B must be of common size or scalars");
  endif

  if (iscomplex (x) || iscomplex (a) || iscomplex (b))
    error ("betainc: all inputs must be real");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  orig_sz = size (x);
  x = x(:);
  a = a(:);
  b = b(:);

  if (any ((x < 0) | (x > 1)))
    error ("betainc: X must be in the range [0, 1]");
  endif

  if (any (a <= 0))
    error ("betainc: A must be strictly positive");
  endif

  if (any (b <= 0))
    error ("betainc: B must be strictly positive");
  endif

  ## If any of the arguments is single then the output should be as well.
  if (strcmp (class (x), "single") || strcmp (class (a), "single")
      || strcmp (class (b), "single"))
    a = single (a);
    b = single (b);
    x = single (x);
  endif

  ## Convert to floating point if necessary
  if (isinteger (x))
    y = double (x);
  endif
  if (isinteger (a))
    a = double (a);
  endif
  if (isinteger (b))
    b = double (b);
  endif

  ## Initialize output array
  y = zeros (size (x), class (x));

  ## In the following, we use the fact that the continued fraction Octave uses
  ## is more efficient when x <= a / (a + b).  Moreover, to compute the upper
  ## version, which is defined as I_x(a,b,"upper") = 1 - I_x(a,b) we use the
  ## property I_x(a,b) + I_(1-x) (b,a) = 1.

  if (strcmpi (tail, "lower"))
    fflag = (x > a./(a+b));
    x(fflag) = 1 - x(fflag);
    [a(fflag), b(fflag)] = deal (b(fflag), a(fflag));
  elseif (strcmpi (tail, "upper"))
    fflag = (x < (a ./ (a + b)));
    x(! fflag) = 1 - x(! fflag);
    [a(! fflag), b(! fflag)] = deal (b(! fflag), a(! fflag));
  else
    error ("betainc: invalid value for TAIL");
  endif

  f = zeros (size (x), class (x));

  ## Continued fractions: CPVWJ, formula 18.5.20, modified Lentz algorithm
  ## implemented in a separate .cc file.  This particular continued fraction
  ## gives (B(a,b) * I_x(a,b)) / (x^a * (1-x)^b).

  f = __betainc__ (x, a, b);

  ## Divide continued fraction by B(a,b) / (x^a * (1-x)^b) to obtain I_x(a,b).
  y = a .* log (x) + b .* log1p (-x) ...
      + (gammaln (a + b) - gammaln (a) - gammaln (b)) + log (f);
  y = real (exp (y));
  y(fflag) = 1 - y(fflag);

  ## Restore original shape
  y = reshape (y, orig_sz);

endfunction


## Double precision
%!test
%! a = [1, 1.5, 2, 3];
%! b = [4, 3, 2, 1];
%! v1 = betainc (1, a, b);
%! v2 = [1,1,1,1];
%! x = [.2, .4, .6, .8];
%! v3 = betainc (x, a, b);
%! v4 = 1 - betainc (1-x, b, a);
%! assert (v1, v2, sqrt (eps));
%! assert (v3, v4, sqrt (eps));

## Single precision
%!test
%! a = single ([1, 1.5, 2, 3]);
%! b = single ([4, 3, 2, 1]);
%! v1 = betainc (1, a, b);
%! v2 = single ([1,1,1,1]);
%! x = single ([.2, .4, .6, .8]);
%! v3 = betainc (x, a, b);
%! v4 = 1 - betainc (1-x, b, a);
%! assert (v1, v2, sqrt (eps ("single")));
%! assert (v3, v4, sqrt (eps ("single")));

## Mixed double/single precision
%!test
%! a = single ([1, 1.5, 2, 3]);
%! b = [4, 3, 2, 1];
%! v1 = betainc (1,a,b);
%! v2 = single ([1,1,1,1]);
%! x = [.2, .4, .6, .8];
%! v3 = betainc (x, a, b);
%! v4 = 1-betainc (1.-x, b, a);
%! assert (v1, v2, sqrt (eps ("single")));
%! assert (v3, v4, sqrt (eps ("single")));

%!test <*51157>
%! y = betainc ([0.00780;0.00782;0.00784],250.005,49750.995);
%! y_ex = [0.999999999999989; 0.999999999999992; 0.999999999999995];
%! assert (y, y_ex, -1e-14);

%!assert (betainc (0.001, 20, 30), 2.750687665855991e-47, -3e-14)
%!assert (betainc (0.0001, 20, 30), 2.819953178893307e-67, -7e-14)
%!assert <*54383> (betainc (0.99, 20, 30, "upper"), 1.5671643161872703e-47, -7e-14)
%!assert (betainc (0.999, 20, 30, "upper"), 1.850806276141535e-77, -7e-14)
%!assert (betainc (0.5, 200, 300), 0.9999964565197356, -1e-15)
%!assert (betainc (0.5, 200, 300, "upper"), 3.54348026439253e-06, -3e-13)

## Test trivial values
%!test
%! [a,b] = ndgrid (linspace (1e-4, 100, 20), linspace (1e-4, 100, 20));
%! assert (betainc (0, a, b), zeros (20));
%! assert (betainc (1, a, b), ones (20));

%!test <*34405>
%! assert (betainc (NaN, 1, 2), NaN);
%! assert (betainc (0.5, 1, Inf), NaN);

## Test input validation
%!error <Invalid call> betainc ()
%!error <Invalid call> betainc (1)
%!error <Invalid call> betainc (1,2)
%!error <must be of common size or scalars> betainc (ones (2,2), ones (1,2), 1)
%!error <all inputs must be real> betainc (0.5i, 1, 2)
%!error <all inputs must be real> betainc (0, 1i, 1)
%!error <all inputs must be real> betainc (0, 1, 1i)
%!error <X must be in the range \[0, 1\]> betainc (-0.1,1,1)
%!error <X must be in the range \[0, 1\]> betainc (1.1,1,1)
%!error <X must be in the range \[0, 1\]>
%! x = ones (1, 1, 2);
%! x(1,1,2) = -1;
%! betainc (x,1,1);
%!error <A must be strictly positive> betainc (0.5,0,1)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! betainc (1,a,1);
%!error <B must be strictly positive> betainc (0.5,1,0)
%!error <B must be strictly positive>
%! b = ones (1, 1, 2);
%! b(1,1,2) = 0;
%! betainc (1,1,b);
%!error <invalid value for TAIL> betainc (1,2,3, "foobar")