view scripts/specfun/gammaincinv.m @ 29949:f254c302bb9c

remove JIT compiler from Octave sources As stated in the NEWS file entry added with this changeset, no one has ever seriously taken on further development of the JIT compiler in Octave since it was first added as part of a Google Summer of Code project in 2012 and it still does nothing significant. It is out of date with the default interpreter that walks the parse tree. Even though we have fixed the configure script to disable it by default, people still ask questions about how to build it, but it doesn’t seem that they are doing that to work on it but because they think it will make Octave code run faster (it never did, except for some extremely simple bits of code as examples for demonstration purposes only). * NEWS: Note change. * configure.ac, acinclude.m4: Eliminate checks and macros related to the JIT compiler and LLVM. * basics.txi, install.txi, octave.texi, vectorize.txi: Remove mention of JIT compiler and LLVM. * jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, pt-jit.cc, pt-jit.h: Delete. * libinterp/parse-tree/module.mk: Update. * Array-jit.cc: Delete. * libinterp/template-inst/module.mk: Update. * test/jit.tst: Delete. * test/module.mk: Update. * interpreter.cc (interpreter::interpreter): Don't check options for debug_jit or jit_compiler. * toplev.cc (F__octave_config_info__): Remove JIT compiler and LLVM info from struct. * ov-base.h (octave_base_value::grab, octave_base_value::release): Delete. * ov-builtin.h, ov-builtin.cc (octave_builtin::to_jit, octave_builtin::stash_jit): Delete. (octave_builtin::m_jtype): Delete data member and all uses. * ov-usr-fcn.h, ov-usr-fcn.cc (octave_user_function::m_jit_info): Delete data member and all uses. (octave_user_function::get_info, octave_user_function::stash_info): Delete. * options.h (DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete macro definitions and all uses. * octave.h, octave.cc (cmdline_options::cmdline_options): Don't handle DEBUG_JIT_OPTION, JIT_COMPILER_OPTION): Delete. (cmdline_options::debug_jit, cmdline_options::jit_compiler): Delete functions and all uses. (cmdline_options::m_debug_jit, cmdline_options::m_jit_compiler): Delete data members and all uses. (octave_getopt_options long_opts): Remove "debug-jit" and "jit-compiler" from the list. * pt-eval.cc (tree_evaluator::visit_simple_for_command, tree_evaluator::visit_complex_for_command, tree_evaluator::visit_while_command, tree_evaluator::execute_user_function): Eliminate JIT compiler code. * pt-loop.h, pt-loop.cc (tree_while_command::get_info, tree_while_command::stash_info, tree_simple_for_command::get_info, tree_simple_for_command::stash_info): Delete functions and all uses. (tree_while_command::m_compiled, tree_simple_for_command::m_compiled): Delete member variable and all uses. * usage.h (usage_string, octave_print_verbose_usage_and_exit): Remove [--debug-jit] and [--jit-compiler] from the message. * Array.h (Array<T>::Array): Remove constructor that was only intended to be used by the JIT compiler. (Array<T>::jit_ref_count, Array<T>::jit_slice_data, Array<T>::jit_dimensions, Array<T>::jit_array_rep): Delete. * Marray.h (MArray<T>::MArray): Remove constructor that was only intended to be used by the JIT compiler. * NDArray.h (NDArray::NDarray): Remove constructor that was only intended to be used by the JIT compiler. * dim-vector.h (dim_vector::to_jit): Delete. (dim_vector::dim_vector): Remove constructor that was only intended to be used by the JIT compiler. * codeql-analysis.yaml, make.yaml: Don't require llvm-dev. * subst-config-vals.in.sh, subst-cross-config-vals.in.sh: Don't substitute OCTAVE_CONF_LLVM_CPPFLAGS, OCTAVE_CONF_LLVM_LDFLAGS, or OCTAVE_CONF_LLVM_LIBS. * Doxyfile.in: Don't define HAVE_LLVM. * aspell-octave.en.pws: Eliminate jit, JIT, and LLVM from the list of spelling exceptions. * build-env.h, build-env.in.cc (LLVM_CPPFLAGS, LLVM_LDFLAGS, LLVM_LIBS): Delete variables and all uses. * libinterp/corefcn/module.mk (%canon_reldir%_libcorefcn_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list. * libinterp/parse-tree/module.mk (%canon_reldir%_libparse_tree_la_CPPFLAGS): Remove $(LLVM_CPPFLAGS) from the list.
author John W. Eaton <jwe@octave.org>
date Tue, 10 Aug 2021 16:42:29 -0400
parents 7854d5752dd2
children 796f54d4ddbf
line wrap: on
line source

########################################################################
##
## Copyright (C) 2017-2021 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} gammaincinv (@var{y}, @var{a})
## @deftypefnx {} {} gammaincinv (@var{y}, @var{a}, @var{tail})
## Compute the inverse of the normalized incomplete gamma function.
##
## The normalized incomplete gamma function is defined as
## @tex
## $$
##  \gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                                 x
##                        1       /
## gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
##                   gamma (a)    /
##                             t=0
## @end group
## @end example
##
## @end ifnottex
##
## and @code{gammaincinv (gammainc (@var{x}, @var{a}), @var{a}) = @var{x}}
## for each non-negative value of @var{x}.  If @var{a} is scalar then
## @code{gammaincinv (@var{y}, @var{a})} is returned for each element of
## @var{y} and vice versa.
##
## If neither @var{y} nor @var{a} is scalar then the sizes of @var{y} and
## @var{a} must agree, and @code{gammaincinv} is applied element-by-element.
## The variable @var{y} must be in the interval @math{[0,1]} while @var{a} must
## be real and positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## gamma function integrated from 0 to @var{x} is computed.  If @var{tail} is
## @qcode{"upper"}, then the complementary function integrated from @var{x} to
## infinity is inverted.
##
## The function is computed with Newton's method by solving
## @tex
## $$
##  y - \gamma (x, a) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - gammainc (@var{x}, @var{a}) = 0
## @end example
##
## @end ifnottex
##
## Reference: @nospell{A. Gil, J. Segura, and N. M. Temme}, @cite{Efficient and
## accurate algorithms for the computation and inversion of the incomplete
## gamma function ratios}, @nospell{SIAM J. Sci.@: Computing}, pp.@:
## A2965--A2981, Vol 34, 2012.
##
## @seealso{gammainc, gamma, gammaln}
## @end deftypefn

function x = gammaincinv (y, a, tail = "lower")

  if (nargin < 2)
    print_usage ();
  endif

  [err, y, a] = common_size (y, a);
  if (err > 0)
    error ("gammaincinv: Y and A must be of common size or scalars");
  endif

  if (iscomplex (y) || iscomplex (a))
    error ("gammaincinv: all inputs must be real");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  orig_sz = size (y);
  y = y(:);
  a = a(:);

  if (any ((y < 0) | (y > 1)))
    error ("gammaincinv: Y must be in the range [0, 1]");
  endif

  if (any (a <= 0))
    error ("gammaincinv: A must be strictly positive");
  endif

  ## If any of the arguments is single then the output should be as well.
  if (strcmp (class (y), "single") || strcmp (class (a), "single"))
    y = single (y);
    a = single (a);
  endif

  ## Convert to floating point if necessary
  if (isinteger (y))
    y = double (y);
  endif
  if (isinteger (a))
    a = double (a);
  endif

  ## Initialize output array
  x = zeros (size (y), class (y));

  maxit = 20;
  tol = eps (class (y));

  ## Special cases, a = 1 or y = 0, 1.

  if (strcmpi (tail, "lower"))
    x(a == 1) = - log1p (- y(a == 1));
    x(y == 0) = 0;
    x(y == 1) = Inf;
    p = y;
    q = 1 - p;
  elseif (strcmpi (tail, "upper"))
    x(a == 1) = - log (y(a == 1));
    x(y == 0) = Inf;
    x(y == 1) = 0;
    q = y;
    p = 1 - q;
  else
    error ("gammaincinv: invalid value for TAIL");
  endif

  todo = (a != 1) & (y != 0) & (y != 1);

  ## Case 1: p small.

  i_flag_1 = todo & (p < ((0.2 * (1 + a)) .^ a) ./ gamma (1 + a));

  if (any (i_flag_1))
    aa = a(i_flag_1);
    pp = p(i_flag_1);

    ## Initial guess.

    r = (pp .* gamma (1 + aa)) .^ (1 ./ aa);

    c2 = 1 ./ (aa + 1);
    c3 = (3  * aa + 5) ./ (2 * (aa + 1) .^2 .* (aa + 2));
    c4 = (8 * aa .^ 2 + 33 * aa + 31) ./ (3 * (aa + 1) .^ 3 .* (aa + 2) .* ...
         (aa + 3));
    c5 = (125 * aa .^ 4 + 1179 * aa .^ 3 + 3971 * aa.^2 + 5661 * aa + 2888) ...
         ./ (24 * (1 + aa) .^4 .* (aa + 2) .^ 2 .* (aa + 3) .* (aa + 4));

    ## FIXME: Would polyval() be better here for more accuracy?
    x0 = r + c2 .* r .^ 2 + c3 .* r .^ 3 + c4 .* r .^4 + c5 .* r .^ 5;

    ## For this case we invert the lower version.

    F = @(p, a, x) p - gammainc (x, a, "lower");
    JF = @(a, x) - exp (- gammaln (a) - x + (a - 1) .* log (x));
    x(i_flag_1) = newton_method (F, JF, pp, aa, x0, tol, maxit);
  endif

  todo(i_flag_1) = false;

  ## Case 2: q small.

  i_flag_2 = (q < exp (- 0.5 * a) ./ gamma (1 + a)) & (a > 0) & (a < 10);
  i_flag_2 &= todo;

  if (any (i_flag_2))
    aa = a(i_flag_2);
    qq = q(i_flag_2);

    ## Initial guess.

    x0 = (-log (qq) - gammaln (aa));

    ## For this case, we invert the upper version.

    F = @(q, a, x) q - gammainc (x, a, "upper");
    JF = @(a, x) exp (- gammaln (a) - x) .* x .^ (a - 1);
    x(i_flag_2) = newton_method (F, JF, qq, aa, x0, tol, maxit);
  endif

  todo(i_flag_2) = false;

  ## Case 3: a small.

  i_flag_3 = todo & ((a > 0) & (a < 1));

  if (any (i_flag_3))
    aa = a(i_flag_3);
    pp = p(i_flag_3);

    ## Initial guess

    xl = (pp .* gamma (aa + 1)) .^ (1 ./ aa);
    x0 = xl;

    ## For this case, we invert the lower version.

    F = @(p, a, x) p - gammainc (x, a, "lower");
    JF = @(a, x) - exp (-gammaln (a) - x) .* x .^ (a - 1);
    x(i_flag_3) = newton_method (F, JF, pp, aa, x0, tol, maxit);
  endif

  todo(i_flag_3) = false;

  ## Case 4: a large.

  i_flag_4 = todo;

  if (any (i_flag_4))
    aa = a(i_flag_4);
    qq = q(i_flag_4);

    ## Initial guess

    d = 1 ./ (9 * aa);
    t = 1 - d + sqrt (2) * erfcinv (2 * qq) .* sqrt (d);
    x0 = aa .* (t .^ 3);

    ## For this case, we invert the upper version.

    F = @(q, a, x) q - gammainc (x, a, "upper");
    JF = @(a, x) exp (- gammaln (a) - x + (a - 1) .* log (x));
    x(i_flag_4) = newton_method (F, JF, qq, aa, x0, tol, maxit);
  endif

  ## Restore original shape
  x = reshape (x, orig_sz);

endfunction

## subfunction: Newton's Method
function x = newton_method (F, JF, y, a, x0, tol, maxit);

  l = numel (y);
  res = -F (y, a, x0) ./ JF (a, x0);
  todo = (abs (res) >= tol * abs (x0));
  x = x0;
  it = 0;
  while (any (todo) && (it++ < maxit))
    x(todo) += res(todo);
    res(todo) = -F (y(todo), a(todo), x(todo)) ./ JF (a(todo), x(todo));
    todo = (abs (res) >= tol * abs (x));
  endwhile
  x += res;

endfunction


%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -3e-14);

%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -3e-14);

%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -1e-13);

%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -1e-13);

%!test <*56453>
%! assert (gammaincinv (1e-15, 1) * 2, 2e-15, -1e-15);
%! assert (gammaincinv (1e-16, 1) * 2, 2e-16, -1e-15);

## Test the conservation of the input class
%!assert (class (gammaincinv (0.5, 1)), "double")
%!assert (class (gammaincinv (single (0.5), 1)), "single")
%!assert (class (gammaincinv (0.5, single (1))), "single")
%!assert (class (gammaincinv (int8 (0), 1)), "double")
%!assert (class (gammaincinv (0.5, int8 (1))), "double")
%!assert (class (gammaincinv (int8 (0), single (1))), "single")
%!assert (class (gammaincinv (single (0.5), int8 (1))), "single")

## Test input validation
%!error <Invalid call> gammaincinv ()
%!error <Invalid call> gammaincinv (1)
%!error <must be of common size or scalars>
%! gammaincinv (ones (2,2), ones (1,2), 1);
%!error <all inputs must be real> gammaincinv (0.5i, 1)
%!error <all inputs must be real> gammaincinv (0, 1i)
%!error <Y must be in the range \[0, 1\]> gammaincinv (-0.1,1)
%!error <Y must be in the range \[0, 1\]> gammaincinv (1.1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! gammaincinv (y,1);
%!error <A must be strictly positive> gammaincinv (0.5, 0)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! gammaincinv (1,a,1);
%!error <invalid value for TAIL> gammaincinv (1,2, "foobar")