view scripts/general/gradient.m @ 14363:f3d52523cde1

Use Octave coding conventions in all m-file %!test blocks * wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m, asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m, csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m, accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m, celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m, cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m, flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m, interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m, isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m, narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m, polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m, randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m, structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m, griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m, get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m, imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m, textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m, duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m, issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m, qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m, bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m, fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m, ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m, news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m, setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m, warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m, pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m, __plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m, colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m, ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m, ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m, orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m, refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m, stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m, deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m, ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m, fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m, sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m, pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m, sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m, beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m, nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m, realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m, vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m, iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m, median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m, range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m, statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m, betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m, cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m, chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m, expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m, gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m, hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m, laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m, logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m, lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m, norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m, poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m, tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m, unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m, wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m, strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m, substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m, asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m, eomday.m, etime.m, is_leap_year.m, now.m: Use Octave coding conventions in all m-file %!test blocks
author Rik <octave@nomad.inbox5.com>
date Mon, 13 Feb 2012 07:29:44 -0800
parents 72c96de7a403
children 5d3a684236b0
line wrap: on
line source

## Copyright (C) 2000-2012 Kai Habel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{dx} =} gradient (@var{m})
## @deftypefnx {Function File} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{s})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{x}, @var{y}, @var{z}, @dots{})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{x}, @var{y}, @dots{})
##
## Calculate the gradient of sampled data or a function.  If @var{m}
## is a vector, calculate the one-dimensional gradient of @var{m}.  If
## @var{m} is a matrix the gradient is calculated for each dimension.
##
## @code{[@var{dx}, @var{dy}] = gradient (@var{m})} calculates the one
## dimensional gradient for @var{x} and @var{y} direction if @var{m} is a
## matrix.  Additional return arguments can be use for multi-dimensional
## matrices.
##
## A constant spacing between two points can be provided by the
## @var{s} parameter.  If @var{s} is a scalar, it is assumed to be the spacing
## for all dimensions.
## Otherwise, separate values of the spacing can be supplied by
## the @var{x}, @dots{} arguments.  Scalar values specify an equidistant
## spacing.
## Vector values for the @var{x}, @dots{} arguments specify the coordinate for
## that
## dimension.  The length must match their respective dimension of @var{m}.
##
## At boundary points a linear extrapolation is applied.  Interior points
## are calculated with the first approximation of the numerical gradient
##
## @example
## y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
## @end example
##
## If the first argument @var{f} is a function handle, the gradient of the
## function at the points in @var{x0} is approximated using central
## difference.  For example, @code{gradient (@@cos, 0)} approximates the
## gradient of the cosine function in the point @math{x0 = 0}.  As with
## sampled data, the spacing values between the points from which the
## gradient is estimated can be set via the @var{s} or @var{dx},
## @var{dy}, @dots{} arguments.  By default a spacing of 1 is used.
## @seealso{diff, del2}
## @end deftypefn

## Author:  Kai Habel <kai.habel@gmx.de>
## Modified: David Bateman <dbateman@free.fr> Added NDArray support

function varargout = gradient (m, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  nargout_with_ans = max(1,nargout);
  if (ismatrix (m))
    [varargout{1:nargout_with_ans}] = matrix_gradient (m, varargin{:});
  elseif (isa (m, "function_handle"))
    [varargout{1:nargout_with_ans}] = handle_gradient (m, varargin{:});
  elseif (ischar(m))
    [varargout{1:nargout_with_ans}] = handle_gradient (str2func (m), varargin{:});
  else
    error ("gradient: first input must be an array or a function");
  endif

endfunction

function varargout = matrix_gradient (m, varargin)
  transposed = false;
  if (isvector (m))
    ## make a row vector.
    transposed = (size (m, 2) == 1);
    m = m(:).';
  endif

  nd = ndims (m);
  sz = size (m);
  if (length(sz) > 1)
    tmp = sz(1); sz(1) = sz(2); sz(2) = tmp;
  endif

  if (nargin > 2 && nargin != nd + 1)
    print_usage ();
  endif

  ## cell d stores a spacing vector for each dimension
  d = cell (1, nd);
  if (nargin == 1)
    ## no spacing given - assume 1.0 for all dimensions
    for i = 1:nd
      d{i} = ones (sz(i) - 1, 1);
    endfor
  elseif (nargin == 2)
    if (isscalar (varargin{1}))
      ## single scalar value for all dimensions
      for i = 1:nd
        d{i} = varargin{1} * ones (sz(i) - 1, 1);
      endfor
    else
      ## vector for one-dimensional derivative
      d{1} = diff (varargin{1}(:));
    endif
  else
    ## have spacing value for each dimension
    if (length(varargin) != nd)
      error ("gradient: dimensions and number of spacing values do not match");
    endif
    for i = 1:nd
      if (isscalar (varargin{i}))
        d{i} = varargin{i} * ones (sz(i) - 1, 1);
      else
        d{i} = diff (varargin{i}(:));
      endif
    endfor
  endif

  m = shiftdim (m, 1);
  for i = 1:min (nd, nargout)
    mr = rows (m);
    mc = numel (m) / mr;
    Y = zeros (size (m), class (m));

    if (mr > 1)
      ## Top and bottom boundary.
      Y(1,:) = diff (m(1:2, :)) / d{i}(1);
      Y(mr,:) = diff (m(mr-1:mr, :) / d{i}(mr - 1));
    endif

    if (mr > 2)
      ## Interior points.
      Y(2:mr-1,:) = ((m(3:mr,:) - m(1:mr-2,:))
          ./ kron (d{i}(1:mr-2) + d{i}(2:mr-1), ones (1, mc)));
    endif

    ## turn multi-dimensional matrix in a way, that gradient
    ## along x-direction is calculated first then y, z, ...

    if (i == 1)
      varargout{i} = shiftdim (Y, nd - 1);
      m = shiftdim (m, nd - 1);
    elseif (i == 2)
      varargout{i} = Y;
      m = shiftdim (m, 2);
    else
      varargout{i} = shiftdim (Y, nd - i + 1);
      m = shiftdim (m, 1);
    endif
  endfor

  if (transposed)
    varargout{1} = varargout{1}.';
  endif
endfunction

function varargout = handle_gradient (f, p0, varargin)
  ## Input checking
  p0_size = size (p0);

  if (numel (p0_size) != 2)
    error ("gradient: the second input argument should either be a vector or a matrix");
  endif

  if (any (p0_size == 1))
    p0 = p0 (:);
    dim = 1;
    num_points = numel (p0);
  else
    num_points = p0_size (1);
    dim = p0_size (2);
  endif

  if (length (varargin) == 0)
    delta = 1;
  elseif (length (varargin) == 1 || length (varargin) == dim)
    try
      delta = [varargin{:}];
    catch
      error ("gradient: spacing parameters must be scalars or a vector");
    end_try_catch
  else
    error ("gradient: incorrect number of spacing parameters");
  endif

  if (isscalar (delta))
    delta = repmat (delta, 1, dim);
  elseif (!isvector (delta))
    error ("gradient: spacing values must be scalars or a vector");
  endif

  ## Calculate the gradient
  p0 = mat2cell (p0, num_points, ones (1, dim));
  varargout = cell (1, dim);
  for d = 1:dim
    s = delta (d);
    df_dx = (f (p0{1:d-1}, p0{d}+s, p0{d+1:end})
           - f (p0{1:d-1}, p0{d}-s, p0{d+1:end})) ./ (2*s);
    if (dim == 1)
      varargout{d} = reshape (df_dx, p0_size);
    else
      varargout{d} = df_dx;
    endif
  endfor
endfunction


%!test
%! data = [1, 2, 4, 2];
%! dx = gradient (data);
%! dx2 = gradient (data, 0.25);
%! dx3 = gradient (data, [0.25, 0.5, 1, 3]);
%! assert (dx, [1, 3/2, 0, -2]);
%! assert (dx2, [4, 6, 0, -8]);
%! assert (dx3, [4, 4, 0, -1]);
%! assert (size_equal (data, dx));

%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X);
%! assert (all (dX(:) == 1));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));

%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X+j*X);
%! assert (all (dX(:) == 1+1j));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y-j*Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2-j*2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z+j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U-j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal(dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));

%!test
%! x = 0:10;
%! f = @cos;
%! df_dx = @(x) -sin (x);
%! assert (gradient (f, x), df_dx (x), 0.2);
%! assert (gradient (f, x, 0.5), df_dx (x), 0.1);

%!test
%! xy = reshape (1:10, 5, 2);
%! f = @(x,y) sin (x) .* cos (y);
%! df_dx = @(x, y) cos (x) .* cos (y);
%! df_dy = @(x, y) -sin (x) .* sin (y);
%! [dx, dy] = gradient (f, xy);
%! assert (dx, df_dx (xy (:, 1), xy (:, 2)), 0.1)
%! assert (dy, df_dy (xy (:, 1), xy (:, 2)), 0.1)