view scripts/sparse/treelayout.m @ 14363:f3d52523cde1

Use Octave coding conventions in all m-file %!test blocks * wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m, asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m, csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m, accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m, celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m, cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m, flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m, interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m, isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m, narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m, polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m, randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m, structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m, griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m, get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m, imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m, textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m, duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m, issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m, qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m, bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m, fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m, ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m, news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m, setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m, warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m, pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m, __plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m, colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m, ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m, ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m, orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m, refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m, stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m, deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m, ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m, fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m, sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m, pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m, sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m, beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m, nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m, realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m, vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m, iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m, median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m, range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m, statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m, betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m, cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m, chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m, expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m, gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m, hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m, laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m, logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m, lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m, norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m, poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m, tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m, unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m, wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m, strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m, substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m, asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m, eomday.m, etime.m, is_leap_year.m, now.m: Use Octave coding conventions in all m-file %!test blocks
author Rik <octave@nomad.inbox5.com>
date Mon, 13 Feb 2012 07:29:44 -0800
parents 72c96de7a403
children 5d3a684236b0
line wrap: on
line source

## Copyright (C) 2008-2012 Ivana Varekova & Radek Salac
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} treelayout (@var{tree})
## @deftypefnx {Function File} {} treelayout (@var{tree}, @var{permutation})
## treelayout lays out a tree or a forest.  The first argument @var{tree} is a
## vector of
## predecessors, optional parameter @var{permutation} is an optional postorder
## permutation.
## The complexity of the algorithm is O(n) in
## terms of time and memory requirements.
## @seealso{etreeplot, gplot, treeplot}
## @end deftypefn

function [x_coordinate, y_coordinate, height, s] = treelayout (tree, permutation)
  if (nargin < 1 || nargin > 2 || nargout > 4)
    print_usage ();
  elseif (! isvector (tree) || rows (tree) != 1 || ! isnumeric (tree)
          ||  any (tree > length (tree)) || any (tree < 0))
    error ("treelayout: the first input argument must be a vector of predecessors");
  else
    ## Make it a row vector.
    tree = tree(:)';

    ## The count of nodes of the graph.
    num_nodes = length (tree);
    ## The number of children.
    num_children = zeros (1, num_nodes + 1);

    ## Checking vector of predecessors.
    for i = 1 : num_nodes
      if (tree(i) < i)
        ## This part of graph was checked before.
        continue;
      endif

      ## Try to find cicle in this part of graph using modified Floyd's
      ## cycle-finding algorithm.
      tortoise = tree(i);
      hare = tree(tortoise);

      while (tortoise != hare)
        ## End after finding a cicle or reaching a checked part of graph.

        if (hare < i)
          ## This part of graph was checked before.
          break
        endif

        tortoise = tree(tortoise);
        ## Hare will move faster than tortoise so in cicle hare must
        ## reach tortoise.
        hare = tree(tree(hare));

      endwhile

      if (tortoise == hare)
        ## If hare reach tortoise we found circle.
        error ("treelayout: vector of predecessors has bad format");
      endif

    endfor
    ## Vector of predecessors has right format.

    for i = 1:num_nodes
      ## vec_of_child is helping vector which is used to speed up the
      ## choice of descendant nodes.

      num_children(tree(i)+1) = num_children(tree(i)+1) + 1;
    endfor

    pos = 1;
    start = zeros (1, num_nodes+1);
    xhelp = zeros (1, num_nodes+1);
    stop = zeros (1, num_nodes+1);
    for i = 1 : num_nodes + 1
      start(i) = pos;
      xhelp(i) = pos;
      pos += num_children(i);
      stop(i) = pos;
    endfor

    if (nargin == 1)
      for i = 1:num_nodes
        vec_of_child(xhelp(tree(i)+1)) = i;
        xhelp(tree(i)+1) = xhelp(tree(i)+1) + 1;
      endfor
    else
      vec_of_child = permutation;
    endif

    ## The number of "parent" (actual) node (it's descendants will be
    ## browse in the next iteration).
    par_number = 0;

    ## The x-coordinate of the left most descendant of "parent node"
    ## this value is increased in each leaf.
    left_most = 0;

    ## The level of "parent" node (root level is num_nodes).
    level = num_nodes;

    ## num_nodes - max_ht is the height of this graph.
    max_ht = num_nodes;

    ## Main stack - each item consists of two numbers - the number of
    ## node and the number it's of parent node on the top of stack
    ## there is "parent node".
    stk = [-1, 0];

    ## Number of vertices s in the top-level separator.
    s = 0;
    ## Flag which says if we are in top level separator.
    top_level = 1;
    ## The top of the stack.
    while (par_number != -1)
      if (start(par_number+1) < stop(par_number+1))
        idx = vec_of_child(start(par_number+1) : stop(par_number+1) - 1);
      else
        idx = zeros (1, 0);
      endif

      ## Add to idx the vector of parent descendants.
      stk = [stk; [idx', ones(fliplr(size(idx))) * par_number]];

      ## We are in top level separator when we have one child and the
      ## flag is 1
      if (columns(idx) == 1 && top_level == 1)
        s++;
      else
        # We aren't in top level separator now.
        top_level = 0;
      endif
      ## If there is not any descendant of "parent node":
      if (stk(end,2) != par_number)
       left_most++;
       x_coordinate_r(par_number) = left_most;
       max_ht = min (max_ht, level);
       if (length(stk) > 1 && find ((shift(stk,1)-stk) == 0) > 1
           && stk(end,2) != stk(end-1,2))
          ## Return to the nearest branching the position to return
          ## position is the position on the stack, where should be
          ## started further search (there are two nodes which has the
          ## same parent node).

          position = (find ((shift (stk(:,2), 1) - stk(:,2)) == 0))(end) + 1;
          par_number_vec = stk(position:end,2);

          ## The vector of removed nodes (the content of stack form
          ## position to end).

          level += length (par_number_vec);

          ## The level have to be decreased.

          x_coordinate_r(par_number_vec) = left_most;
          stk(position:end,:) = [];
        endif

        ## Remove the next node from "searched branch".

        stk(end,:) = [];
        ## Choose new "parent node".
        par_number = stk(end,1);
        ## If there is another branch start to search it.
        if (par_number != -1)
          y_coordinate(par_number) = level;
          x_coordinate_l(par_number) = left_most + 1;
        endif
      else

        ## There were descendants of "parent nod" choose the last of
        ## them and go on through it.
        level--;
        par_number = stk(end,1);
        y_coordinate(par_number) = level;
        x_coordinate_l(par_number) = left_most + 1;
      endif
    endwhile

    ## Calculate the x coordinates (the known values are the position
    ## of most left and most right descendants).
    x_coordinate = (x_coordinate_l + x_coordinate_r) / 2;

    height = num_nodes - max_ht - 1;
  endif
endfunction


%!test
%! % Compute a simple tree layout
%! [x, y, h, s] = treelayout ([0, 1, 2, 2]);
%! assert (x, [1.5, 1.5, 2, 1]);
%! assert (y, [3, 2, 1, 1]);
%! assert (h, 2);
%! assert (s, 2);

%!test
%! % Compute a simple tree layout with defined postorder permutation
%! [x, y, h, s] = treelayout ([0, 1, 2, 2], [1, 2, 4, 3]);
%! assert (x, [1.5, 1.5, 1, 2]);
%! assert (y, [3, 2, 1, 1]);
%! assert (h, 2);
%! assert (s, 2);

%!test
%! % Compute a simple tree layout with defined postorder permutation
%! [x, y, h, s] = treelayout ([0, 1, 2, 2], [4, 2, 3, 1]);
%! assert (x, [0, 0, 0, 1]);
%! assert (y, [0, 0, 0, 3]);
%! assert (h, 0);
%! assert (s, 1);