view liboctave/numeric/lo-mappers.cc @ 20791:f7084eae3318

maint: Use Octave coding conventions for #if statements. * mk-opts.pl, dialog.h, find-files-dialog.h, find-files-model.h, file-editor-tab.h, octave-qscintilla.h, octave-txt-lexer.h, main-window.h, octave-cmd.h, octave-dock-widget.h, octave-gui.h, thread-manager.h, workspace-model.h, workspace-view.h, builtins.h, Cell.h, bitfcns.cc, c-file-ptr-stream.h, cdisplay.h, comment-list.h, cutils.h, data.h, debug.h, defaults.in.h, defun-dld.h, defun-int.h, defun.h, dirfns.h, display.h, dynamic-ld.h, error.h, event-queue.h, file-io.h, filter.cc, getrusage.cc, gl-render.h, gl2ps-renderer.h, graphics.in.h, gripes.h, help.h, hook-fcn.h, input.h, jit-ir.h, jit-typeinfo.h, jit-util.h, load-path.h, load-save.h, ls-ascii-helper.h, ls-hdf5.h, ls-mat-ascii.h, ls-mat4.h, ls-mat5.h, ls-oct-binary.h, ls-oct-text.h, ls-utils.h, oct-errno.h, oct-fstrm.h, oct-handle.h, oct-hdf5-types.h, oct-hdf5.h, oct-hist.h, oct-iostrm.h, oct-lvalue.h, oct-map.h, oct-obj.h, oct-prcstrm.h, oct-procbuf.h, oct-stdstrm.h, oct-stream.h, oct-strstrm.h, oct.h, octave-link.h, pager.h, pr-output.h, procstream.h, profiler.h, pt-jit.h, sighandlers.cc, sighandlers.h, siglist.h, sparse-xdiv.h, sparse-xpow.h, symtab.h, syscalls.cc, sysdep.h, toplev.cc, toplev.h, utils.h, variables.h, workspace-element.h, xdiv.h, xnorm.h, xpow.h, dmperm.cc, oct-qhull.h, mkbuiltins, oct-conf.in.h, ov-base-diag.h, ov-base-int.h, ov-base-mat.h, ov-base-scalar.h, ov-base-sparse.h, ov-base.h, ov-bool-mat.h, ov-bool-sparse.h, ov-bool.h, ov-builtin.h, ov-cell.h, ov-ch-mat.h, ov-class.h, ov-classdef.h, ov-colon.h, ov-complex.h, ov-cs-list.h, ov-cx-diag.h, ov-cx-mat.h, ov-cx-sparse.h, ov-dld-fcn.h, ov-fcn-handle.h, ov-fcn-inline.h, ov-fcn.h, ov-float.h, ov-flt-complex.h, ov-flt-cx-diag.h, ov-flt-cx-mat.h, ov-flt-re-diag.h, ov-flt-re-mat.h, ov-int-traits.h, ov-int16.h, ov-int32.h, ov-int64.h, ov-int8.h, ov-java.h, ov-lazy-idx.h, ov-mex-fcn.h, ov-null-mat.h, ov-perm.h, ov-range.h, ov-re-diag.h, ov-re-mat.h, ov-re-sparse.h, ov-scalar.h, ov-str-mat.h, ov-struct.h, ov-type-conv.h, ov-typeinfo.h, ov-uint16.h, ov-uint32.h, ov-uint64.h, ov-uint8.h, ov-usr-fcn.h, ov.h, octave.h, ops.h, options-usage.h, lex.h, parse.h, pt-all.h, pt-arg-list.h, pt-array-list.h, pt-assign.h, pt-binop.h, pt-bp.h, pt-cbinop.h, pt-cell.h, pt-check.h, pt-classdef.h, pt-cmd.h, pt-colon.h, pt-const.h, pt-decl.h, pt-eval.h, pt-except.h, pt-exp.h, pt-fcn-handle.h, pt-funcall.h, pt-id.h, pt-idx.h, pt-jump.h, pt-loop.h, pt-mat.h, pt-misc.h, pt-pr-code.h, pt-select.h, pt-stmt.h, pt-unop.h, pt-walk.h, pt.h, token.h, version.in.h, Array-util.h, Array.h, CColVector.h, CDiagMatrix.h, CMatrix.h, CNDArray.h, CRowVector.h, CSparse.h, DiagArray2.h, MArray-decl.h, MArray-defs.h, MArray.h, MDiagArray2.h, MSparse.h, Matrix.h, MatrixType.h, PermMatrix.h, Range.h, Sparse.h, boolMatrix.h, boolNDArray.h, boolSparse.h, chMatrix.h, chNDArray.h, dColVector.h, dDiagMatrix.h, dMatrix.h, dNDArray.h, dRowVector.h, dSparse.h, dim-vector.h, fCColVector.h, fCDiagMatrix.h, fCMatrix.h, fCNDArray.h, fCRowVector.h, fColVector.h, fDiagMatrix.h, fMatrix.h, fNDArray.h, fRowVector.h, idx-vector.h, int16NDArray.h, int32NDArray.h, int64NDArray.h, int8NDArray.h, intNDArray.h, uint16NDArray.h, uint32NDArray.h, uint64NDArray.h, uint8NDArray.h, f77-fcn.h, lo-error.h, quit.h, CmplxAEPBAL.h, CmplxCHOL.h, CmplxGEPBAL.h, CmplxHESS.h, CmplxLU.h, CmplxQR.h, CmplxQRP.h, CmplxSCHUR.h, CmplxSVD.h, CollocWt.h, DAE.h, DAEFunc.h, DAERT.h, DAERTFunc.h, DASPK.h, DASRT.h, DASSL.h, DET.h, EIG.h, LSODE.h, ODE.h, ODEFunc.h, ODES.h, ODESFunc.h, Quad.h, SparseCmplxCHOL.h, SparseCmplxLU.h, SparseCmplxQR.cc, SparseCmplxQR.h, SparseQR.h, SparsedbleCHOL.h, SparsedbleLU.h, base-aepbal.h, base-dae.h, base-de.h, base-lu.h, base-min.h, base-qr.h, bsxfun-decl.h, bsxfun-defs.cc, bsxfun.h, dbleAEPBAL.h, dbleCHOL.h, dbleGEPBAL.h, dbleHESS.h, dbleLU.h, dbleQR.h, dbleQRP.h, dbleSCHUR.h, dbleSVD.h, eigs-base.cc, fCmplxAEPBAL.h, fCmplxCHOL.h, fCmplxGEPBAL.h, fCmplxHESS.h, fCmplxLU.h, fCmplxQR.h, fCmplxQRP.h, fCmplxSCHUR.h, fCmplxSVD.h, fEIG.h, floatAEPBAL.h, floatCHOL.h, floatGEPBAL.h, floatHESS.h, floatLU.h, floatQR.h, floatQRP.h, floatSCHUR.h, floatSVD.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, oct-convn.h, oct-fftw.h, oct-norm.h, oct-rand.h, oct-spparms.h, randmtzig.c, sparse-base-chol.h, sparse-base-lu.h, sparse-dmsolve.cc, Sparse-diag-op-defs.h, Sparse-op-decls.h, Sparse-op-defs.h, Sparse-perm-op-defs.h, mk-ops.awk, mx-base.h, mx-defs.h, mx-ext.h, mx-inlines.cc, mx-op-decl.h, mx-op-defs.h, sparse-mk-ops.awk, dir-ops.h, file-ops.h, file-stat.h, lo-sysdep.h, mach-info.h, oct-env.h, oct-group.h, oct-openmp.h, oct-passwd.h, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.h, pathlen.h, sysdir.h, syswait.h, action-container.h, base-list.h, byte-swap.h, caseless-str.h, cmd-edit.h, cmd-hist.h, data-conv.h, functor.h, glob-match.h, kpse.cc, lo-array-gripes.h, lo-cutils.h, lo-ieee.h, lo-macros.h, lo-math.h, lo-regexp.h, lo-traits.h, lo-utils.h, oct-alloc.h, oct-base64.h, oct-binmap.h, oct-cmplx.h, oct-glob.h, oct-inttypes.h, oct-locbuf.h, oct-mutex.h, oct-refcount.h, oct-rl-edit.h, oct-rl-hist.h, oct-shlib.h, oct-sort.h, oct-sparse.h, pathsearch.h, singleton-cleanup.h, sparse-sort.h, sparse-util.h, statdefs.h, str-vec.h, sun-utils.h, unwind-prot.h, url-transfer.h: Use Octave coding conventions for #if statements.
author Rik <rik@octave.org>
date Thu, 03 Dec 2015 10:23:38 -0800
parents 3fa35defe495
children f7121e111991
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cfloat>

#include "lo-error.h"
#include "lo-ieee.h"
#include "lo-mappers.h"
#include "lo-math.h"
#include "lo-specfun.h"
#include "lo-utils.h"
#include "oct-cmplx.h"

#include "f77-fcn.h"

// double -> double mappers.

// Both xtrunc and xround belong here so we can keep gnulib:: out of
// lo-mappers.h.

double
xtrunc (double x)
{
  return gnulib::trunc (x);
}

double
xcopysign (double x, double y)
{
  return gnulib::copysign (x, y);
}

double xfloor (double x)
{
  return gnulib::floor (x);
}

double
xround (double x)
{
  return gnulib::round (x);
}

double
xroundb (double x)
{
  double t = xround (x);

  if (fabs (x - t) == 0.5)
    t = 2 * xtrunc (0.5 * t);

  return t;
}

double
signum (double x)
{
  double tmp = 0.0;

  if (x < 0.0)
    tmp = -1.0;
  else if (x > 0.0)
    tmp = 1.0;

  return xisnan (x) ? octave_NaN : tmp;
}

double
xlog2 (double x)
{
  return gnulib::log2 (x);
}

Complex
xlog2 (const Complex& x)
{
#if defined (M_LN2)
  static double ln2 = M_LN2;
#else
  static double ln2 = gnulib::log (2);
#endif

  return std::log (x) / ln2;
}

double
xexp2 (double x)
{
#if defined (HAVE_EXP2)
  return exp2 (x);
#else
#if defined (M_LN2)
  static double ln2 = M_LN2;
#else
  static double ln2 = gnulib::log (2);
#endif

  return exp (x * ln2);
#endif
}

double
xlog2 (double x, int& exp)
{
  return gnulib::frexp (x, &exp);
}

Complex
xlog2 (const Complex& x, int& exp)
{
  double ax = std::abs (x);
  double lax = xlog2 (ax, exp);
  return (ax != lax) ? (x / ax) * lax : x;
}

// double -> bool mappers.

#if ! defined (HAVE_CMATH_ISNAN)
bool
xisnan (double x)
{
  return lo_ieee_isnan (x);
}
#endif

#if ! defined (HAVE_CMATH_ISFINITE)
bool
xfinite (double x)
{
  return lo_ieee_finite (x);
}
#endif

#if ! defined (HAVE_CMATH_ISINF)
bool
xisinf (double x)
{
  return lo_ieee_isinf (x);
}
#endif

bool
octave_is_NA (double x)
{
  return lo_ieee_is_NA (x);
}

// (double, double) -> double mappers.

// complex -> complex mappers.

Complex
acos (const Complex& x)
{
  static Complex i (0, 1);

  Complex tmp;

  if (imag (x) == 0.0)
    {
      // If the imaginary part of X is 0, then avoid generating an
      // imaginary part of -0 for the expression 1-x*x.
      // This effectively chooses the same phase of the branch cut as Matlab.
      double xr = real (x);
      tmp = Complex (1.0 - xr*xr);
    }
  else
    tmp = 1.0 - x*x;

  return -i * log (x + i * sqrt (tmp));
}

Complex
acosh (const Complex& x)
{
  return log (x + sqrt (x + 1.0) * sqrt (x - 1.0));
}

Complex
asin (const Complex& x)
{
  static Complex i (0, 1);

  Complex tmp;

  if (imag (x) == 0.0)
    {
      // If the imaginary part of X is 0, then avoid generating an
      // imaginary part of -0 for the expression 1-x*x.
      // This effectively chooses the same phase of the branch cut as Matlab.
      double xr = real (x);
      tmp = Complex (1.0 - xr*xr);
    }
  else
    tmp = 1.0 - x*x;

  return -i * log (i*x + sqrt (tmp));
}

Complex
asinh (const Complex& x)
{
  return log (x + sqrt (x*x + 1.0));
}

Complex
atan (const Complex& x)
{
  static Complex i (0, 1);

  return i * log ((i + x) / (i - x)) / 2.0;
}

Complex
atanh (const Complex& x)
{
  return log ((1.0 + x) / (1.0 - x)) / 2.0;
}

// complex -> bool mappers.

bool
octave_is_NA (const Complex& x)
{
  return (octave_is_NA (real (x)) || octave_is_NA (imag (x)));
}

bool
octave_is_NaN_or_NA (const Complex& x)
{
  return (xisnan (real (x)) || xisnan (imag (x)));
}

// (complex, complex) -> complex mappers.

// FIXME: need to handle NA too?

Complex
xmin (const Complex& x, const Complex& y)
{
  return abs (x) <= abs (y) ? x : (xisnan (x) ? x : y);
}

Complex
xmax (const Complex& x, const Complex& y)
{
  return abs (x) >= abs (y) ? x : (xisnan (x) ? x : y);
}


// float -> float mappers.

// Both xtrunc and xround belong here so we can keep gnulib:: out of
// lo-mappers.h.

float
xtrunc (float x)
{
  return gnulib::truncf (x);
}

float
xcopysign (float x, float y)
{
  return gnulib::copysignf (x, y);
}

float xfloor (float x)
{
  return gnulib::floorf (x);
}

float
xround (float x)
{
  return gnulib::roundf (x);
}

float
xroundb (float x)
{
  float t = xround (x);

  if (fabsf (x - t) == 0.5)
    t = 2 * xtrunc (0.5 * t);

  return t;
}

float
signum (float x)
{
  float tmp = 0.0;

  if (x < 0.0)
    tmp = -1.0;
  else if (x > 0.0)
    tmp = 1.0;

  return xisnan (x) ? octave_Float_NaN : tmp;
}

float
xlog2 (float x)
{
  return gnulib::log2f (x);
}

FloatComplex
xlog2 (const FloatComplex& x)
{
#if defined (M_LN2)
  static float ln2 = M_LN2;
#else
  static float ln2 = log (2);
#endif

  return std::log (x) / ln2;
}

float
xexp2 (float x)
{
#if defined (HAVE_EXP2F)
  return exp2f (x);
#elif defined (HAVE_EXP2)
  return exp2 (x);
#else
#if defined (M_LN2)
  static float ln2 = M_LN2;
#else
  static float ln2 = log2 (2);
#endif

  return exp (x * ln2);
#endif
}

float
xlog2 (float x, int& exp)
{
  return gnulib::frexpf (x, &exp);
}

FloatComplex
xlog2 (const FloatComplex& x, int& exp)
{
  float ax = std::abs (x);
  float lax = xlog2 (ax, exp);
  return (ax != lax) ? (x / ax) * lax : x;
}

// float -> bool mappers.

#if ! defined (HAVE_CMATH_ISNANF)
bool
xisnan (float x)
{
  return lo_ieee_isnan (x);
}
#endif

#if ! defined (HAVE_CMATH_ISFINITEF)
bool
xfinite (float x)
{
  return lo_ieee_finite (x);
}
#endif

#if ! defined (HAVE_CMATH_ISINFF)
bool
xisinf (float x)
{
  return lo_ieee_isinf (x);
}
#endif

bool
octave_is_NA (float x)
{
  return lo_ieee_is_NA (x);
}

// (float, float) -> float mappers.

// complex -> complex mappers.

FloatComplex
acos (const FloatComplex& x)
{
  static FloatComplex i (0, 1);

  FloatComplex tmp;

  if (imag (x) == 0.0f)
    {
      // If the imaginary part of X is 0, then avoid generating an
      // imaginary part of -0 for the expression 1-x*x.
      // This effectively chooses the same phase of the branch cut as Matlab.
      float xr = real (x);
      tmp = FloatComplex (1.0f - xr*xr);
    }
  else
    tmp = 1.0f - x*x;

  return -i * log (x + i * sqrt (tmp));
}

FloatComplex
acosh (const FloatComplex& x)
{
  return log (x + sqrt (x + 1.0f) * sqrt (x - 1.0f));
}

FloatComplex
asin (const FloatComplex& x)
{
  static FloatComplex i (0, 1);

  FloatComplex tmp;

  if (imag (x) == 0.0f)
    {
      // If the imaginary part of X is 0, then avoid generating an
      // imaginary part of -0 for the expression 1-x*x.
      // This effectively chooses the same phase of the branch cut as Matlab.
      float xr = real (x);
      tmp = FloatComplex (1.0f - xr*xr);
    }
  else
    tmp = 1.0f - x*x;

  return -i * log (i*x + sqrt (tmp));
}

FloatComplex
asinh (const FloatComplex& x)
{
  return log (x + sqrt (x*x + 1.0f));
}

FloatComplex
atan (const FloatComplex& x)
{
  static FloatComplex i (0, 1);

  return i * log ((i + x) / (i - x)) / 2.0f;
}

FloatComplex
atanh (const FloatComplex& x)
{
  return log ((1.0f + x) / (1.0f - x)) / 2.0f;
}

// complex -> bool mappers.

bool
octave_is_NA (const FloatComplex& x)
{
  return (octave_is_NA (real (x)) || octave_is_NA (imag (x)));
}

bool
octave_is_NaN_or_NA (const FloatComplex& x)
{
  return (xisnan (real (x)) || xisnan (imag (x)));
}

// (complex, complex) -> complex mappers.

// FIXME: need to handle NA too?

FloatComplex
xmin (const FloatComplex& x, const FloatComplex& y)
{
  return abs (x) <= abs (y) ? x : (xisnan (x) ? x : y);
}

FloatComplex
xmax (const FloatComplex& x, const FloatComplex& y)
{
  return abs (x) >= abs (y) ? x : (xisnan (x) ? x : y);
}

Complex
rc_acos (double x)
{
  return fabs (x) > 1.0 ? acos (Complex (x)) : Complex (acos (x));
}

FloatComplex
rc_acos (float x)
{
  return fabsf (x) > 1.0f ? acos (FloatComplex (x)) : FloatComplex (acosf (x));
}

Complex
rc_acosh (double x)
{
  return x < 1.0 ? acosh (Complex (x)) : Complex (acosh (x));
}

FloatComplex
rc_acosh (float x)
{
  return x < 1.0f ? acosh (FloatComplex (x)) : FloatComplex (acoshf (x));
}

Complex
rc_asin (double x)
{
  return fabs (x) > 1.0 ? asin (Complex (x)) : Complex (asin (x));
}

FloatComplex
rc_asin (float x)
{
  return fabsf (x) > 1.0f ? asin (FloatComplex (x)) : FloatComplex (asinf (x));
}

Complex
rc_atanh (double x)
{
  return fabs (x) > 1.0 ? atanh (Complex (x)) : Complex (atanh (x));
}

FloatComplex
rc_atanh (float x)
{
  return fabsf (x) > 1.0f ? atanh (FloatComplex (x))
                          : FloatComplex (atanhf (x));
}

Complex
rc_log (double x)
{
  const double pi = 3.14159265358979323846;
  return x < 0.0 ? Complex (gnulib::log (-x), pi) : Complex (gnulib::log (x));
}

FloatComplex
rc_log (float x)
{
  const float pi = 3.14159265358979323846f;
  return (x < 0.0f
          ? FloatComplex (gnulib::logf (-x), pi)
          : FloatComplex (gnulib::logf (x)));
}

Complex
rc_log2 (double x)
{
  const double pil2 = 4.53236014182719380962; // = pi / log(2)
  return x < 0.0 ? Complex (xlog2 (-x), pil2) : Complex (xlog2 (x));
}

FloatComplex
rc_log2 (float x)
{
  const float pil2 = 4.53236014182719380962f; // = pi / log(2)
  return x < 0.0f ? FloatComplex (xlog2 (-x), pil2) : FloatComplex (xlog2 (x));
}

Complex
rc_log10 (double x)
{
  const double pil10 = 1.36437635384184134748; // = pi / log(10)
  return x < 0.0 ? Complex (log10 (-x), pil10) : Complex (log10 (x));
}

FloatComplex
rc_log10 (float x)
{
  const float pil10 = 1.36437635384184134748f; // = pi / log(10)
  return x < 0.0f ? FloatComplex (log10 (-x), pil10)
                  : FloatComplex (log10f (x));
}

Complex
rc_sqrt (double x)
{
  return x < 0.0 ? Complex (0.0, sqrt (-x)) : Complex (sqrt (x));
}

FloatComplex
rc_sqrt (float x)
{
  return x < 0.0f ? FloatComplex (0.0f, sqrtf (-x)) : FloatComplex (sqrtf (x));
}

bool
xnegative_sign (double x)
{
  return __lo_ieee_signbit (x);
}

bool
xnegative_sign (float x)
{
  return __lo_ieee_float_signbit (x);
}

// Convert X to the nearest integer value.  Should not pass NaN to
// this function.

// Sometimes you need a large integer, but not always.

octave_idx_type
NINTbig (double x)
{
  if (x > std::numeric_limits<octave_idx_type>::max ())
    return std::numeric_limits<octave_idx_type>::max ();
  else if (x < std::numeric_limits<octave_idx_type>::min ())
    return std::numeric_limits<octave_idx_type>::min ();
  else
    return static_cast<octave_idx_type> ((x > 0) ? (x + 0.5) : (x - 0.5));
}

octave_idx_type
NINTbig (float x)
{
  if (x > std::numeric_limits<octave_idx_type>::max ())
    return std::numeric_limits<octave_idx_type>::max ();
  else if (x < std::numeric_limits<octave_idx_type>::min ())
    return std::numeric_limits<octave_idx_type>::min ();
  else
    return static_cast<octave_idx_type> ((x > 0) ? (x + 0.5) : (x - 0.5));
}

int
NINT (double x)
{
  if (x > std::numeric_limits<int>::max ())
    return std::numeric_limits<int>::max ();
  else if (x < std::numeric_limits<int>::min ())
    return std::numeric_limits<int>::min ();
  else
    return static_cast<int> ((x > 0) ? (x + 0.5) : (x - 0.5));
}

int
NINT (float x)
{
  if (x > std::numeric_limits<int>::max ())
    return std::numeric_limits<int>::max ();
  else if (x < std::numeric_limits<int>::min ())
    return std::numeric_limits<int>::min ();
  else
    return static_cast<int> ((x > 0) ? (x + 0.5) : (x - 0.5));
}