view liboctave/array/Range.cc @ 21202:f7121e111991

maint: indent #ifdef blocks in liboctave and src directories. * Array-C.cc, Array-b.cc, Array-ch.cc, Array-d.cc, Array-f.cc, Array-fC.cc, Array-i.cc, Array-idx-vec.cc, Array-s.cc, Array-str.cc, Array-util.cc, Array-voidp.cc, Array.cc, CColVector.cc, CDiagMatrix.cc, CMatrix.cc, CNDArray.cc, CRowVector.cc, CSparse.cc, CSparse.h, DiagArray2.cc, MArray-C.cc, MArray-d.cc, MArray-f.cc, MArray-fC.cc, MArray-i.cc, MArray-s.cc, MArray.cc, MDiagArray2.cc, MSparse-C.cc, MSparse-d.cc, MSparse.h, MatrixType.cc, PermMatrix.cc, Range.cc, Sparse-C.cc, Sparse-b.cc, Sparse-d.cc, Sparse.cc, boolMatrix.cc, boolNDArray.cc, boolSparse.cc, chMatrix.cc, chNDArray.cc, dColVector.cc, dDiagMatrix.cc, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dSparse.h, dim-vector.cc, fCColVector.cc, fCDiagMatrix.cc, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fColVector.cc, fDiagMatrix.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc, idx-vector.cc, int16NDArray.cc, int32NDArray.cc, int64NDArray.cc, int8NDArray.cc, intNDArray.cc, uint16NDArray.cc, uint32NDArray.cc, uint64NDArray.cc, uint8NDArray.cc, blaswrap.c, cquit.c, f77-extern.cc, f77-fcn.c, f77-fcn.h, lo-error.c, quit.cc, quit.h, CmplxAEPBAL.cc, CmplxCHOL.cc, CmplxGEPBAL.cc, CmplxHESS.cc, CmplxLU.cc, CmplxQR.cc, CmplxQRP.cc, CmplxSCHUR.cc, CmplxSVD.cc, CollocWt.cc, DASPK.cc, DASRT.cc, DASSL.cc, EIG.cc, LSODE.cc, ODES.cc, Quad.cc, base-lu.cc, base-qr.cc, dbleAEPBAL.cc, dbleCHOL.cc, dbleGEPBAL.cc, dbleHESS.cc, dbleLU.cc, dbleQR.cc, dbleQRP.cc, dbleSCHUR.cc, dbleSVD.cc, eigs-base.cc, fCmplxAEPBAL.cc, fCmplxCHOL.cc, fCmplxGEPBAL.cc, fCmplxHESS.cc, fCmplxLU.cc, fCmplxQR.cc, fCmplxQRP.cc, fCmplxSCHUR.cc, fCmplxSVD.cc, fEIG.cc, floatAEPBAL.cc, floatCHOL.cc, floatGEPBAL.cc, floatHESS.cc, floatLU.cc, floatQR.cc, floatQRP.cc, floatSCHUR.cc, floatSVD.cc, lo-mappers.cc, lo-specfun.cc, oct-convn.cc, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-rand.cc, oct-spparms.cc, randgamma.c, randmtzig.c, randpoisson.c, sparse-chol.cc, sparse-dmsolve.cc, sparse-lu.cc, sparse-qr.cc, mx-defs.h, dir-ops.cc, file-ops.cc, file-stat.cc, lo-sysdep.cc, mach-info.cc, oct-env.cc, oct-group.cc, oct-openmp.h, oct-passwd.cc, oct-syscalls.cc, oct-time.cc, oct-uname.cc, pathlen.h, sysdir.h, syswait.h, cmd-edit.cc, cmd-hist.cc, data-conv.cc, f2c-main.c, glob-match.cc, lo-array-errwarn.cc, lo-array-gripes.cc, lo-cutils.c, lo-cutils.h, lo-ieee.cc, lo-math.h, lo-regexp.cc, lo-utils.cc, oct-base64.cc, oct-glob.cc, oct-inttypes.cc, oct-inttypes.h, oct-locbuf.cc, oct-mutex.cc, oct-refcount.h, oct-rl-edit.c, oct-rl-hist.c, oct-shlib.cc, oct-sort.cc, pathsearch.cc, singleton-cleanup.cc, sparse-sort.cc, sparse-util.cc, statdefs.h, str-vec.cc, unwind-prot.cc, url-transfer.cc, display-available.h, main-cli.cc, main-gui.cc, main.in.cc, mkoctfile.in.cc, octave-config.in.cc, shared-fcns.h: indent #ifdef blocks in liboctave and src directories.
author Rik <rik@octave.org>
date Sat, 06 Feb 2016 06:40:13 -0800
parents 54527108599a
children a83e7a384ee0
line wrap: on
line source

/*

Copyright (C) 1993-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <cfloat>

#include <iostream>
#include <limits>

#include "Range.h"
#include "lo-error.h"
#include "lo-mappers.h"
#include "lo-math.h"
#include "lo-utils.h"
#include "Array-util.h"

bool
Range::all_elements_are_ints (void) const
{
  // If the base and increment are ints, the final value in the range
  // will also be an integer, even if the limit is not. If there is one
  // or fewer elements only the base needs to be an integer

  return (! (xisnan (rng_base) || xisnan (rng_inc))
          && (NINTbig (rng_base) == rng_base || rng_numel < 1)
          && (NINTbig (rng_inc) == rng_inc || rng_numel <= 1));
}

Matrix
Range::matrix_value (void) const
{
  if (rng_numel > 0 && cache.is_empty ())
    {
      cache.resize (1, rng_numel);

      // The first element must always be *exactly* the base.
      // E.g, -0 would otherwise become +0 in the loop (-0 + 0*increment).
      cache(0) = rng_base;

      double b = rng_base;
      double increment = rng_inc;
      for (octave_idx_type i = 1; i < rng_numel - 1; i++)
        cache(i) = b + i * increment;

      cache(rng_numel - 1) = rng_limit;
    }

  return cache;
}

double
Range::checkelem (octave_idx_type i) const
{
  if (i < 0 || i >= rng_numel)
    err_index_out_of_range (1, 1, i+1, rng_numel);

  if (i == 0)
    return rng_base;
  else if (i < rng_numel - 1)
    return rng_base + i * rng_inc;
  else
    return rng_limit;
}

double
Range::elem (octave_idx_type i) const
{
#if defined (ENABLE_BOUNDS_CHECK)
  return checkelem (i);
#else
  if (i == 0)
    return rng_base;
  else if (i < rng_numel - 1)
    return rng_base + i * rng_inc;
  else
    return rng_limit;
#endif
}

// Helper class used solely for idx_vector.loop () function call
class __rangeidx_helper
{
public:
  __rangeidx_helper (double *a, double b, double i, double l, octave_idx_type n)
    : array (a), base (b), inc (i), limit (l), nmax (n-1) { }

  void operator () (octave_idx_type i)
  {
    if (i == 0)
      *array++ = base;
    else if (i < nmax)
      *array++ = base + i * inc;
    else
      *array++ = limit;
  }

private:

  double *array, base, inc, limit;
  octave_idx_type nmax;

};

Array<double>
Range::index (const idx_vector& i) const
{
  Array<double> retval;

  octave_idx_type n = rng_numel;

  if (i.is_colon ())
    {
      retval = matrix_value ().reshape (dim_vector (rng_numel, 1));
    }
  else
    {
      if (i.extent (n) != n)
        err_index_out_of_range (1, 1, i.extent (n), n); // throws

      dim_vector rd = i.orig_dimensions ();
      octave_idx_type il = i.length (n);

      // taken from Array.cc.
      if (n != 1 && rd.is_vector ())
        rd = dim_vector (1, il);

      retval.clear (rd);

      // idx_vector loop across all values in i,
      // executing __rangeidx_helper (i) for each i
      i.loop (n, __rangeidx_helper (retval.fortran_vec (),
                                    rng_base, rng_inc, rng_limit, rng_numel));
    }

  return retval;
}

// NOTE: max and min only return useful values if numel > 0.
//       do_minmax_body() in max.cc avoids calling Range::min/max if numel == 0.

double
Range::min (void) const
{
  double retval = 0.0;
  if (rng_numel > 0)
    {
      if (rng_inc > 0)
        retval = rng_base;
      else
        {
          retval = rng_base + (rng_numel - 1) * rng_inc;

          // Require '<=' test.  See note in max ().
          if (retval <= rng_limit)
            retval = rng_limit;
        }

    }
  return retval;
}

double
Range::max (void) const
{
  double retval = 0.0;
  if (rng_numel > 0)
    {
      if (rng_inc > 0)
        {
          retval = rng_base + (rng_numel - 1) * rng_inc;

          // On some machines (x86 with extended precision floating point
          // arithmetic, for example) it is possible that we can overshoot the
          // limit by approximately the machine precision even though we were
          // very careful in our calculation of the number of elements.
          // Therefore, we clip the result to the limit if it overshoots.
          // The test also includes equality (>= rng_limit) to have expressions
          // such as -5:1:-0 result in a -0 endpoint.
          if (retval >= rng_limit)
            retval = rng_limit;
        }
      else
        retval = rng_base;
    }
  return retval;
}

void
Range::sort_internal (bool ascending)
{
  if ((ascending && rng_base > rng_limit && rng_inc < 0.0)
      || (! ascending && rng_base < rng_limit && rng_inc > 0.0))
    {
      std::swap (rng_base, rng_limit);
      rng_inc = -rng_inc;
      clear_cache ();
    }
}

void
Range::sort_internal (Array<octave_idx_type>& sidx, bool ascending)
{
  octave_idx_type nel = numel ();

  sidx.resize (dim_vector (1, nel));

  octave_idx_type *psidx = sidx.fortran_vec ();

  bool reverse = false;

  if ((ascending && rng_base > rng_limit && rng_inc < 0.0)
      || (! ascending && rng_base < rng_limit && rng_inc > 0.0))
    {
      std::swap (rng_base, rng_limit);
      rng_inc = -rng_inc;
      clear_cache ();
      reverse = true;
    }

  octave_idx_type tmp = reverse ? nel - 1 : 0;
  octave_idx_type stp = reverse ? -1 : 1;

  for (octave_idx_type i = 0; i < nel; i++, tmp += stp)
    psidx[i] = tmp;

}

Matrix
Range::diag (octave_idx_type k) const
{
  return matrix_value ().diag (k);
}

Range
Range::sort (octave_idx_type dim, sortmode mode) const
{
  Range retval = *this;

  if (dim == 1)
    {
      if (mode == ASCENDING)
        retval.sort_internal (true);
      else if (mode == DESCENDING)
        retval.sort_internal (false);
    }
  else if (dim != 0)
    (*current_liboctave_error_handler) ("Range::sort: invalid dimension");

  return retval;
}

Range
Range::sort (Array<octave_idx_type>& sidx, octave_idx_type dim,
             sortmode mode) const
{
  Range retval = *this;

  if (dim == 1)
    {
      if (mode == ASCENDING)
        retval.sort_internal (sidx, true);
      else if (mode == DESCENDING)
        retval.sort_internal (sidx, false);
    }
  else if (dim != 0)
    (*current_liboctave_error_handler) ("Range::sort: invalid dimension");

  return retval;
}

sortmode
Range::is_sorted (sortmode mode) const
{
  if (rng_numel > 1 && rng_inc > 0)
    mode = (mode == DESCENDING) ? UNSORTED : ASCENDING;
  else if (rng_numel > 1 && rng_inc < 0)
    mode = (mode == ASCENDING) ? UNSORTED : DESCENDING;
  else
    mode = mode ? mode : ASCENDING;

  return mode;
}

void
Range::set_base (double b)
{
  if (rng_base != b)
    {
      rng_base = b;
      rng_numel = numel_internal ();

      double tmplimit = rng_limit;

      if (rng_inc > 0)
        tmplimit = max ();
      else
        tmplimit = min ();

      if (tmplimit != rng_limit)
        rng_limit = tmplimit;

      clear_cache ();
    }
}

void
Range::set_limit (double l)
{
  if (rng_limit != l)
    {
      rng_limit = l;
      rng_numel = numel_internal ();

      double tmplimit = rng_limit;

      if (rng_inc > 0)
        tmplimit = max ();
      else
        tmplimit = min ();

      if (tmplimit != rng_limit)
        rng_limit = tmplimit;

      clear_cache ();
    }
}

void
Range::set_inc (double i)
{
  if (rng_inc != i)
    {
      rng_inc = i;
      rng_numel = numel_internal ();

      double tmplimit = rng_limit;

      if (rng_inc > 0)
        tmplimit = max ();
      else
        tmplimit = min ();

      if (tmplimit != rng_limit)
        rng_limit = tmplimit;

      clear_cache ();
    }
}

std::ostream&
operator << (std::ostream& os, const Range& a)
{
  double b = a.base ();
  double increment = a.inc ();
  octave_idx_type num_elem = a.numel ();

  if (num_elem > 1)
    {
      // First element must be the base *exactly* (-0).
      os << b << " ";
      for (octave_idx_type i = 1; i < num_elem-1; i++)
        os << b + i * increment << " ";
    }

  // Print out exactly the last element, rather than a calculated last element.
  os << a.rng_limit << "\n";

  return os;
}

std::istream&
operator >> (std::istream& is, Range& a)
{
  is >> a.rng_base;
  if (is)
    {
      double tmp_rng_limit;
      is >> tmp_rng_limit;

      if (is)
        is >> a.rng_inc;

      // Clip the rng_limit to the true limit and rebuild numel, clear cache
      a.set_limit (tmp_rng_limit);
    }

  return is;
}

Range
operator - (const Range& r)
{
  return Range (-r.base (), -r.limit (), -r.inc (), r.numel ());
}

Range operator + (double x, const Range& r)
{
  Range result (x + r.base (), x + r.limit (), r.inc (), r.numel ());
  if (result.rng_numel < 0)
    result.cache = x + r.matrix_value ();

  return result;
}

Range operator + (const Range& r, double x)
{
  Range result (r.base () + x, r.limit () + x, r.inc (), r.numel ());
  if (result.rng_numel < 0)
    result.cache = r.matrix_value () + x;

  return result;
}

Range operator - (double x, const Range& r)
{
  Range result (x - r.base (), x - r.limit (), -r.inc (), r.numel ());
  if (result.rng_numel < 0)
    result.cache = x - r.matrix_value ();

  return result;
}

Range operator - (const Range& r, double x)
{
  Range result (r.base () - x, r.limit () - x, r.inc (), r.numel ());
  if (result.rng_numel < 0)
    result.cache = r.matrix_value () - x;

  return result;
}

Range operator * (double x, const Range& r)
{
  Range result (x * r.base (), x * r.limit (), x * r.inc (), r.numel ());
  if (result.rng_numel < 0)
    result.cache = x * r.matrix_value ();

  return result;
}

Range operator * (const Range& r, double x)
{
  Range result (r.base () * x, r.limit () * x, r.inc () * x, r.numel ());
  if (result.rng_numel < 0)
    result.cache = r.matrix_value () * x;

  return result;
}


// C  See Knuth, Art Of Computer Programming, Vol. 1, Problem 1.2.4-5.
// C
// C===Tolerant FLOOR function.
// C
// C    X  -  is given as a Double Precision argument to be operated on.
// C          It is assumed that X is represented with M mantissa bits.
// C    CT -  is   given   as   a   Comparison   Tolerance   such   that
// C          0.LT.CT.LE.3-SQRT(5)/2. If the relative difference between
// C          X and A whole number is  less  than  CT,  then  TFLOOR  is
// C          returned   as   this   whole   number.   By  treating  the
// C          floating-point numbers as a finite ordered set  note  that
// C          the  heuristic  EPS=2.**(-(M-1))   and   CT=3*EPS   causes
// C          arguments  of  TFLOOR/TCEIL to be treated as whole numbers
// C          if they are  exactly  whole  numbers  or  are  immediately
// C          adjacent to whole number representations.  Since EPS,  the
// C          "distance"  between  floating-point  numbers  on  the unit
// C          interval, and M, the number of bits in X'S mantissa, exist
// C          on  every  floating-point   computer,   TFLOOR/TCEIL   are
// C          consistently definable on every floating-point computer.
// C
// C          For more information see the following references:
// C    (1) P. E. Hagerty, "More On Fuzzy Floor And Ceiling," APL  QUOTE
// C        QUAD 8(4):20-24, June 1978. Note that TFLOOR=FL5.
// C    (2) L. M. Breed, "Definitions For Fuzzy Floor And Ceiling",  APL
// C        QUOTE QUAD 8(3):16-23, March 1978. This paper cites FL1 through
// C        FL5, the history of five years of evolutionary development of
// C        FL5 - the seven lines of code below - by open collaboration
// C        and corroboration of the mathematical-computing community.
// C
// C  Penn State University Center for Academic Computing
// C  H. D. Knoble - August, 1978.

static inline double
tfloor (double x, double ct)
{
// C---------FLOOR(X) is the largest integer algebraically less than
// C         or equal to X; that is, the unfuzzy FLOOR function.

//  DINT (X) = X - DMOD (X, 1.0);
//  FLOOR (X) = DINT (X) - DMOD (2.0 + DSIGN (1.0, X), 3.0);

// C---------Hagerty's FL5 function follows...

  double q = 1.0;

  if (x < 0.0)
    q = 1.0 - ct;

  double rmax = q / (2.0 - ct);

  double t1 = 1.0 + gnulib::floor (x);
  t1 = (ct / q) * (t1 < 0.0 ? -t1 : t1);
  t1 = rmax < t1 ? rmax : t1;
  t1 = ct > t1 ? ct : t1;
  t1 = gnulib::floor (x + t1);

  if (x <= 0.0 || (t1 - x) < rmax)
    return t1;
  else
    return t1 - 1.0;
}

static inline double
tceil (double x, double ct)
{
  return -tfloor (-x, ct);
}

static inline bool
teq (double u, double v,
     double ct = 3.0 * std::numeric_limits<double>::epsilon ())
{
  double tu = fabs (u);
  double tv = fabs (v);

  return fabs (u - v) < ((tu > tv ? tu : tv) * ct);
}

octave_idx_type
Range::numel_internal (void) const
{
  octave_idx_type retval = -1;

  if (rng_inc == 0
      || (rng_limit > rng_base && rng_inc < 0)
      || (rng_limit < rng_base && rng_inc > 0))
    {
      retval = 0;
    }
  else
    {
      double ct = 3.0 * std::numeric_limits<double>::epsilon ();

      double tmp = tfloor ((rng_limit - rng_base + rng_inc) / rng_inc, ct);

      octave_idx_type n_elt = (tmp > 0.0 ? static_cast<octave_idx_type> (tmp)
                                         : 0);

      // If the final element that we would compute for the range is
      // equal to the limit of the range, or is an adjacent floating
      // point number, accept it.  Otherwise, try a range with one
      // fewer element.  If that fails, try again with one more
      // element.
      //
      // I'm not sure this is very good, but it seems to work better than
      // just using tfloor as above.  For example, without it, the
      // expression 1.8:0.05:1.9 fails to produce the expected result of
      // [1.8, 1.85, 1.9].

      if (! teq (rng_base + (n_elt - 1) * rng_inc, rng_limit))
        {
          if (teq (rng_base + (n_elt - 2) * rng_inc, rng_limit))
            n_elt--;
          else if (teq (rng_base + n_elt * rng_inc, rng_limit))
            n_elt++;
        }

      retval = (n_elt < std::numeric_limits<octave_idx_type>::max () - 1)
               ? n_elt : -1;
    }

  return retval;
}