view scripts/general/integral3.m @ 24158:f9549e90d620

integral3.m: Return single type output if an input is of single type (bug #52243). * integral3.m: Check for any limit of integration (x, y, or z) being of type single. If found, cast xa, xb limits of integration to single. This will signal to downstream quadrature routines to use single variables.
author Rik <rik@octave.org>
date Wed, 18 Oct 2017 21:59:38 -0700
parents 1a3229a2f1ab
children 194eb4bd202b
line wrap: on
line source

## Copyright (C) 2017 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} integral3 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb})
## @deftypefnx {} {@var{q} =} integral3 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{prop}, @var{val}, @dots{})
##
## Numerically evaluate the three-dimensional integral of @var{f} using
## adaptive quadrature over the three-dimensional domain defined by
## @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb} (scalars may
## be finite or infinite).  Additionally, @var{ya} and @var{yb} may be
## scalar functions of @var{x} and @var{za}, and @var{zb} maybe be scalar
## functions of @var{x} and @var{y}, allowing for integration over
## non-rectangular domains.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  The function @var{f} must be of the form
## @math{z = f(x,y)} where @var{x} is a vector and @var{y} is a scalar.  It
## should return a vector of the same length and orientation as @var{x}.
##
## Additional optional parameters can be specified using
## @qcode{"@var{property}", @var{value}} pairs.  Valid properties are:
##
## @table @code
## @item AbsTol
## Define the absolute error tolerance for the quadrature.  The default
## value is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature.  The default
## value is 1e-6 (1e-4 for single).
##
## @item Method
## Specify the two-dimensional integration method to be used, with valid
## options being @qcode{"auto"} (default), @qcode{"tiled"}, or
## @qcode{"iterated"}.  When using @qcode{"auto"}, Octave will choose the
## @qcode{"tiled"} method unless any of the integration limits are infinite.
##
## @item Vectorized
## Enable or disable vectorized integration.  A value of @code{false} forces
## Octave to use only scalar inputs when calling the integrand, which enables
## integrands @math{f(x,y)} that have not been vectorized and only accept
## @var{x} and @var{y} as scalars to be used.  The default value is
## @code{true}.
## @end table
##
## Adaptive quadrature is used to minimize the estimate of error until the
## following is satisfied:
## @tex
## $$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##         @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
## @end group
## @end example
##
## @end ifnottex
##
## @var{err} is an approximate bound on the error in the integral
## @code{abs (@var{q} - @var{I})}, where @var{I} is the exact value of the
## integral.
##
## Example 1 : integrate over a rectangular volume
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y},@var{z}) ones (size (@var{x}));
## @var{q} = integral3 (@var{f}, 0, 1, 0, 1, 0, 1)
##   @result{} @var{q} =  1
## @end group
## @end example
##
## For this constant-value integrand, the result is a volume which is just
## @code{@var{Length} * @var{Width} x @var{Height}}.
##
## Example 2 : integrate over a spherical volume
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) ones (size (@var{x}));
## @var{ymax} = @@(@var{x}) sqrt (1 - @var{x}.^2);
## @var{zmax} = @@(@var{x}) sqrt (1 - @var{x}.^2 - @var{y}.^2);
## @var{q} = integral3 (@var{f}, 0, 1, 0, @var{ymax})
##   @result{} @var{q} =  0.52360
## @end group
## @end example
##
## For this constant-value integrand, the result is a volume which is 1/8th
## of a unit sphere or @code{1/8 * 4/3 * pi}.
##
## Programming Notes: If there are singularities within the integration region
## it is best to split the integral and place the singularities on the
## boundary.
##
## Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
## any integration limits are of type @code{single}, then Octave's integral
## functions automatically reduce the default absolute and relative error
## tolerances as specified above.  If tighter tolerances are desired they
## must be specified.  @sc{matlab} leaves the tighter tolerances appropriate
## for @code{double} inputs in place regardless of the class of the
## integration limits.
##
## Reference: @nospell{L.F. Shampine},
## @cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
## Computation, pp. 266--274, Vol 1, 2008.
##
## @seealso{triplequad, integral, quad, quadgk, quadv, quadl,
##          quadcc, trapz, integral2, quad2d, dblquad}
## @end deftypefn

function q = integral3 (f, xa, xb, ya, yb, za, zb, varargin)

  if (nargin < 7 || mod (nargin, 2) == 0)
    print_usage ();
  endif

  if (! is_function_handle (f))
    print_usage ();
  endif

  if (! (isreal (xa) && isscalar (xa) && isreal (xb) && isscalar (xb)))
    print_usage ();
  endif

  ## Check for single or double limits to set appropriate default tolerance.
  issingle = (isa ([xa, xb], "single")
              || (! is_function_handle (ya) && isa (ya, "single"))
              || (! is_function_handle (yb) && isa (yb, "single"))
              || (! is_function_handle (za) && isa (za, "single"))
              || (! is_function_handle (zb) && isa (zb, "single")));

  ## Communicate to downstream quadrature routines that at least one limit of
  ## integration was of single type by casting xa, xb to single.
  if (issingle)
    xa = single (xa);
    xb = single (xb);
  endif

  ## Set default tolerances, and then update with any specified parameters.
  if (issingle)
    abstol = 1e-5;
    reltol = 1e-4;
  else
    abstol = 1e-10;
    reltol = 1e-6;
  endif

  method = "auto";
  vectorized = true;
  idx = 1;
  while (idx < nargin - 7)
    prop = varargin{idx++};
    if (! ischar (prop))
      error ("integral3: property PROP must be a string");
    endif

    switch (tolower (prop))
      case "abstol"
        abstol = varargin{idx++};
        if (! (isnumeric (abstol) && isscalar (abstol) && abstol >= 0))
          error ("integral3: AbsTol value must be a numeric scalar >= 0");
        endif

      case "reltol"
        reltol = varargin{idx++};
        if (! (isnumeric (reltol) && isscalar (reltol) && reltol >= 0))
          error ("integral3: RelTol value must be a numeric scalar >= 0");
        endif

      case "method"
        method = tolower (varargin{idx++});
        if (! any (strcmp (method, {"auto", "iterated", "tiled"})))
          error ("integral3 : unrecognized method '%s'", method);
        endif

      case "vectorized"
        vectorized = varargin{idx++};
        if (! (isscalar (vectorized) && isreal (vectorized)))
          error ('integral3: Vectorized must be a logical value');
        endif

      otherwise
        error ("integral3: unknown property '%s'", prop);

    endswitch
  endwhile

  if (strcmp (method, "auto"))
    if (isinf (xa) || isinf (xb)
        || (! is_function_handle (ya) && isinf (ya))
        || (! is_function_handle (yb) && isinf (yb))
        || (! is_function_handle (za) && isinf (za))
        || (! is_function_handle (zb) && isinf (zb)))
      method = "iterated";
    else
      method = "tiled";
    endif
  endif

  ## check upper and lower bounds of y
  if (! is_function_handle (ya))
    if (! (isreal (ya) && isscalar (ya)))
      error ("integral3: YA must be a real scalar or a function");
    endif
    ya = @(x) ya * ones (size (x));
  endif
  if (! is_function_handle (yb))
    if (! (isreal (yb) && isscalar (yb)))
      error ("integral3: YB must be a real scalar or a function");
    endif
    yb = @(x) yb * ones (size (x));
  endif

  ## check upper and lower bounds of z
  if (! is_function_handle (za))
    if (! (isreal (za) && isscalar (za)))
      error ("integral3: ZA must be a real scalar or a function");
    endif
    za = @(x, y) za * ones (size(y));
  endif
  if (! is_function_handle (zb))
    if (! (isreal (zb) && isscalar (zb)))
      error ("integral3: ZB must be a real scalar or a function")
    endif
    zb = @(x, y) zb * ones (size (y));
  endif

  finner = @(x) inner (x, f, ya, yb, za, zb, vectorized, method, abstol, reltol);
  q = quadcc (finner, xa, xb, [abstol, reltol]);

endfunction

function q = inner (x, f, ya, yb, za, zb, vectorized, method, abstol, reltol)
  q = zeros (size (x));
  for i = 1 : length (x)
    za2 = @(y) za(x(i), y);
    zb2 = @(y) zb(x(i), y);
    f2 = @(y, z) f(x(i), y, z);
    if (! vectorized)
      f2 = @(y, z) arrayfun (f2, y, z);
    endif
    if (strcmp (method, "iterated"))
      finner_iter = @(y) inner_iterated (y, f2, za2, zb2, abstol, reltol);
      q(i) = quadcc (finner_iter, ya(x(i)), yb(x(i)), [abstol, reltol]);
    else
      q(i) = quad2d (f2, ya(x(i)), yb(x(i)), za2, zb2,
                     "AbsTol", abstol, "RelTol", reltol);
    endif
  endfor
endfunction

function q = inner_iterated (y, f2, za2, zb2, abstol, reltol)
  q = zeros (size (y));
  for i = 1 : length (y)
    q(i) = quadcc (@(z) f2(y(i), z), za2(y(i)), zb2(y(i)), [abstol, reltol]);
  endfor
endfunction


## method tests
%!shared f
%! f = @(x, y, z) x .* y .* z;

%!assert (integral3 (f, 0, 1, 0, 1, 0, 1), 0.125, 1e-10);
%!assert (integral3 (f, 0, 1, 0, 1, 0, 1, "method", "tiled"), 0.125, 1e-10);
%!assert (integral3 (f, 0, 1, 0, 1, 0, 1, "method", "iterated"), 0.125, 1e-10);
%!assert (integral3 (f, 0, 1, 0, 1, 0, 1, "method", "auto"), 0.125, 1e-10);

## vectorized = false test
%!test
%! f = @(x, y, z) x * y * z;
%! assert (integral3 (f, 0, 1, 0, 1, 0, 1, "vectorized", false), 0.125, 1e-10);

## tolerance tests
%!test
%! f = @(x, y, z) 2 * x.^2 + 3 * y.^2 + 4 * z.^2;
%!assert (integral3 (f, 0, 5, -5, 0, 0, 5, "AbsTol", 1e-9), 9375, 1e-9)
%!assert (integral3 (f, 0, 5, -5, 0, 0, 5, "RelTol", 1e-5), 9375, -1e-5)
%!assert (integral3 (f, 0, 5, -5, 0, 0, 5, "RelTol", 1e-6, "AbsTol", 1e-9),
%!        9375, 1e-9)

## non-rectangular region
## This test is too slow with "iterated" method
%!test
%! f = @(x,y,z) 1 ./ (x + y + z);
%! ymax = @(x) 1 - x;
%! zmax = @(x, y) 1 - x - y;
%! assert (integral3 (f, 0, 1, 0, ymax, 0, zmax, "method", "tiled"), 0.25, 1e-6);

## Test input validation
%!error integral3
%!error integral3 (@plus)
%!error integral3 (@plus, 1)
%!error integral3 (@plus, 1, 2)
%!error integral3 (@plus, 1, 2, 3)
%!error integral3 (@plus, 1, 2, 3, 4)
%!error integral3 (@plus, 1, 2, 3, 4, 5)
%!error integral3 (@plus, 1, 2, 3, 4, 5, 6, "foo")
%!error integral3 (0, 1, 2, 3, 4, 5, 6)          # f must be a function handle
%!error integral3 (@plus, 1i, 2, 3, 4, 5, 6)     # real limits
%!error integral3 (@plus, 1, 2i, 3, 4, 5, 6)     # real limits
%!error integral3 (@plus, [1 1], 2, 3, 4, 5, 6)  # scalar limits
%!error integral3 (@plus, 1, [2 2], 3, 4, 5, 6)  # scalar limits
%!error <property PROP must be a string>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, 99, "bar");
%!error <AbsTol value must be a numeric>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "AbsTol", "foo");
%!error <AbsTol value must be a .* scalar>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "AbsTol", [1, 2]);
%!error <AbsTol value must be.* .= 0>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "AbsTol", -1);
%!error <RelTol value must be a numeric>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "RelTol", "foo");
%!error <RelTol value must be a .* scalar>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "RelTol", [1, 2]);
%!error <RelTol value must be.* .= 0>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "RelTol", -1);
%!error <unrecognized method 'foo'>
%! integral3 (@plus,1,2,3,4,5,6, "method", "foo");
%!error <Vectorized must be a logical value>
%! integral3 (@plus,1,2,3,4,5,6, "Vectorized", [0 1]);
%!error <Vectorized must be a logical value>
%! integral3 (@plus,1,2,3,4,5,6, "Vectorized", {true});
%!error <unknown property 'foo'>
%! integral3 (@plus, 1, 2, 3, 4, 6, 6, "foo", "bar");
%!error <YA must be a real scalar> integral3 (@plus, 1, 2, 3i, 4, 5, 6)
%!error <YA must be a real scalar> integral3 (@plus, 1, 2, [3 3], 4, 5, 6)
%!error <YB must be a real scalar> integral3 (@plus, 1, 2, 3, 4i, 5, 6)
%!error <YB must be a real scalar> integral3 (@plus, 1, 2, 3, [4 4], 5, 6)
%!error <ZA must be a real scalar> integral3 (@plus, 1, 2, 3, 4, 5i, 6)
%!error <ZA must be a real scalar> integral3 (@plus, 1, 2, 3, 4, [5 5], 6)
%!error <ZB must be a real scalar> integral3 (@plus, 1, 2, 3, 4, 5, 6i)
%!error <ZB must be a real scalar> integral3 (@plus, 1, 2, 3, 4, 5, [6 6])