view libinterp/corefcn/dot.cc @ 21200:fcac5dbbf9ed

maint: Indent #ifdef blocks in libinterp. * builtins.h, Cell.cc, __contourc__.cc, __dispatch__.cc, __dsearchn__.cc, __ichol__.cc, __ilu__.cc, __lin_interpn__.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, besselj.cc, betainc.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, cellfun.cc, colloc.cc, comment-list.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, debug.cc, defaults.cc, defaults.in.h, defun-dld.h, defun.cc, defun.h, det.cc, dirfns.cc, display.cc, dlmread.cc, dot.cc, dynamic-ld.cc, eig.cc, ellipj.cc, error.cc, errwarn.cc, event-queue.cc, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl2ps-print.cc, graphics.cc, graphics.in.h, gripes.cc, hash.cc, help.cc, hess.cc, hex2num.cc, input.cc, inv.cc, jit-ir.cc, jit-typeinfo.cc, jit-util.cc, jit-util.h, kron.cc, load-path.cc, load-save.cc, lookup.cc, ls-ascii-helper.cc, ls-hdf5.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, ls-oct-binary.cc, ls-oct-text.cc, ls-oct-text.h, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, luinc.cc, mappers.cc, matrix_type.cc, max.cc, mex.h, mexproto.h, mgorth.cc, nproc.cc, oct-errno.in.cc, oct-fstrm.cc, oct-hdf5-types.cc, oct-hdf5.h, oct-hist.cc, oct-iostrm.cc, oct-lvalue.cc, oct-map.cc, oct-prcstrm.cc, oct-procbuf.cc, oct-stream.cc, oct-strstrm.cc, octave-link.cc, ordschur.cc, pager.cc, pinv.cc, pr-output.cc, procstream.cc, profiler.cc, psi.cc, pt-jit.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, sparse-xdiv.cc, sparse-xpow.cc, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, syscalls.cc, sysdep.cc, sysdep.h, time.cc, toplev.cc, tril.cc, tsearch.cc, txt-eng-ft.cc, txt-eng.cc, typecast.cc, urlwrite.cc, utils.cc, variables.cc, xdiv.cc, xnorm.cc, xpow.cc, zfstream.cc, __delaunayn__.cc, __eigs__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __magick_read__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, ccolamd.cc, chol.cc, colamd.cc, convhulln.cc, dmperm.cc, fftw.cc, oct-qhull.h, qr.cc, symbfact.cc, symrcm.cc, oct-conf.in.cc, ov-base-diag.cc, ov-base-int.cc, ov-base-mat.cc, ov-base-scalar.cc, ov-base-sparse.cc, ov-base.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-builtin.cc, ov-cell.cc, ov-ch-mat.cc, ov-class.cc, ov-classdef.cc, ov-colon.cc, ov-complex.cc, ov-cs-list.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-dld-fcn.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-fcn.cc, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-diag.cc, ov-flt-re-mat.cc, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-java.cc, ov-lazy-idx.cc, ov-mex-fcn.cc, ov-null-mat.cc, ov-oncleanup.cc, ov-perm.cc, ov-range.cc, ov-re-diag.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov.cc, ovl.cc, octave.cc, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-double-conv.cc, op-fcdm-fcdm.cc, op-fcdm-fdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-float-conv.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-int-conv.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, pt-arg-list.cc, pt-array-list.cc, pt-assign.cc, pt-binop.cc, pt-bp.cc, pt-cbinop.cc, pt-cell.cc, pt-check.cc, pt-classdef.cc, pt-cmd.cc, pt-colon.cc, pt-colon.h, pt-const.cc, pt-decl.cc, pt-eval.cc, pt-except.cc, pt-exp.cc, pt-fcn-handle.cc, pt-funcall.cc, pt-id.cc, pt-idx.cc, pt-jump.cc, pt-loop.cc, pt-mat.cc, pt-misc.cc, pt-pr-code.cc, pt-select.cc, pt-stmt.cc, pt-unop.cc, pt.cc, token.cc, Array-jit.cc, Array-os.cc, Array-sym.cc, Array-tc.cc, version.cc: Indent #ifdef blocks in libinterp.
author Rik <rik@octave.org>
date Fri, 05 Feb 2016 16:29:08 -0800
parents 6f0bd96f93c0
children 40de9f8f23a6
line wrap: on
line source

/*

Copyright (C) 2009-2015 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include "f77-fcn.h"
#include "mx-base.h"
#include "error.h"
#include "defun.h"
#include "parse.h"

extern "C"
{
  F77_RET_T
  F77_FUNC (ddot3, DDOT3) (const octave_idx_type&, const octave_idx_type&,
                           const octave_idx_type&, const double*,
                           const double*, double*);

  F77_RET_T
  F77_FUNC (sdot3, SDOT3) (const octave_idx_type&, const octave_idx_type&,
                           const octave_idx_type&, const float*,
                           const float*, float*);

  F77_RET_T
  F77_FUNC (zdotc3, ZDOTC3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const Complex*,
                             const Complex*, Complex*);

  F77_RET_T
  F77_FUNC (cdotc3, CDOTC3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const FloatComplex*,
                             const FloatComplex*, FloatComplex*);

  F77_RET_T
  F77_FUNC (dmatm3, DMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const double*, const double*, double*);

  F77_RET_T
  F77_FUNC (smatm3, SMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const float*, const float*, float*);

  F77_RET_T
  F77_FUNC (zmatm3, ZMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const Complex*, const Complex*, Complex*);

  F77_RET_T
  F77_FUNC (cmatm3, CMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const FloatComplex*, const FloatComplex*,
                             FloatComplex*);
}

static void
get_red_dims (const dim_vector& x, const dim_vector& y, int dim,
              dim_vector& z, octave_idx_type& m, octave_idx_type& n,
              octave_idx_type& k)
{
  int nd = x.length ();
  assert (nd == y.length ());
  z = dim_vector::alloc (nd);
  m = 1, n = 1, k = 1;
  for (int i = 0; i < nd; i++)
    {
      if (i < dim)
        {
          z(i) = x(i);
          m *= x(i);
        }
      else if (i > dim)
        {
          z(i) = x(i);
          n *= x(i);
        }
      else
        {
          k = x(i);
          z(i) = 1;
        }
    }
}

DEFUN (dot, args, ,
       "-*- texinfo -*-\n\
@deftypefn {} {} dot (@var{x}, @var{y}, @var{dim})\n\
Compute the dot product of two vectors.\n\
\n\
If @var{x} and @var{y} are matrices, calculate the dot products along the\n\
first non-singleton dimension.\n\
\n\
If the optional argument @var{dim} is given, calculate the dot products\n\
along this dimension.\n\
\n\
This is equivalent to\n\
@code{sum (conj (@var{X}) .* @var{Y}, @var{dim})},\n\
but avoids forming a temporary array and is faster.  When @var{X} and\n\
@var{Y} are column vectors, the result is equivalent to\n\
@code{@var{X}' * @var{Y}}.\n\
@seealso{cross, divergence}\n\
@end deftypefn")
{
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    print_usage ();

  octave_value retval;
  octave_value argx = args(0);
  octave_value argy = args(1);

  if (! argx.is_numeric_type () || ! argy.is_numeric_type ())
    error ("dot: X and Y must be numeric");

  dim_vector dimx = argx.dims ();
  dim_vector dimy = argy.dims ();
  bool match = dimx == dimy;
  if (! match && nargin == 2 && dimx.is_vector () && dimy.is_vector ())
    {
      // Change to column vectors.
      dimx = dimx.redim (1);
      argx = argx.reshape (dimx);
      dimy = dimy.redim (1);
      argy = argy.reshape (dimy);
      match = dimx == dimy;
    }

  if (! match)
    error ("dot: sizes of X and Y must match");

  int dim;
  if (nargin == 2)
    dim = dimx.first_non_singleton ();
  else
    dim = args(2).int_value (true) - 1;

  if (dim < 0)
    error ("dot: DIM must be a valid dimension");

  octave_idx_type m, n, k;
  dim_vector dimz;
  if (argx.is_complex_type () || argy.is_complex_type ())
    {
      if (argx.is_single_type () || argy.is_single_type ())
        {
          FloatComplexNDArray x = argx.float_complex_array_value ();
          FloatComplexNDArray y = argy.float_complex_array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          FloatComplexNDArray z (dimz);

          F77_XFCN (cdotc3, CDOTC3, (m, n, k,
                                     x.data (), y.data (),
                                     z.fortran_vec ()));
          retval = z;
        }
      else
        {
          ComplexNDArray x = argx.complex_array_value ();
          ComplexNDArray y = argy.complex_array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          ComplexNDArray z (dimz);

          F77_XFCN (zdotc3, ZDOTC3, (m, n, k,
                                     x.data (), y.data (),
                                     z.fortran_vec ()));
          retval = z;
        }
    }
  else if (argx.is_float_type () && argy.is_float_type ())
    {
      if (argx.is_single_type () || argy.is_single_type ())
        {
          FloatNDArray x = argx.float_array_value ();
          FloatNDArray y = argy.float_array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          FloatNDArray z (dimz);

          F77_XFCN (sdot3, SDOT3, (m, n, k, x.data (), y.data (),
                                   z.fortran_vec ()));
          retval = z;
        }
      else
        {
          NDArray x = argx.array_value ();
          NDArray y = argy.array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          NDArray z (dimz);

          F77_XFCN (ddot3, DDOT3, (m, n, k, x.data (), y.data (),
                                   z.fortran_vec ()));
          retval = z;
        }
    }
  else
    {
      // Non-optimized evaluation.
      octave_value_list tmp;
      tmp(1) = dim + 1;
      tmp(0) = do_binary_op (octave_value::op_el_mul, argx, argy);

      tmp = feval ("sum", tmp, 1);
      if (! tmp.empty ())
        retval = tmp(0);
    }

  return retval;
}

/*
%!assert (dot ([1, 2], [2, 3]), 8)

%!test
%! x = [2, 1; 2, 1];
%! y = [-0.5, 2; 0.5, -2];
%! assert (dot (x, y), [0 0]);
%! assert (dot (single (x), single (y)), single ([0 0]));

%!test
%! x = [1+i, 3-i; 1-i, 3-i];
%! assert (dot (x, x), [4, 20]);
%! assert (dot (single (x), single (x)), single ([4, 20]));

%!test
%! x = int8 ([1 2]);
%! y = int8 ([2 3]);
%! assert (dot (x, y), 8);

%!test
%! x = int8 ([1 2; 3 4]);
%! y = int8 ([5 6; 7 8]);
%! assert (dot (x, y), [26 44]);
%! assert (dot (x, y, 2), [17; 53]);
%! assert (dot (x, y, 3), [5 12; 21 32]);

%% Test input validation
%!error dot ()
%!error dot (1)
%!error dot (1,2,3,4)
%!error <X and Y must be numeric> dot ({1,2}, [3,4])
%!error <X and Y must be numeric> dot ([1,2], {3,4})
%!error <sizes of X and Y must match> dot ([1 2], [1 2 3])
%!error <sizes of X and Y must match> dot ([1 2]', [1 2 3]')
%!error <sizes of X and Y must match> dot (ones (2,2), ones (2,3))
%!error <DIM must be a valid dimension> dot ([1 2], [1 2], 0)
*/

DEFUN (blkmm, args, ,
       "-*- texinfo -*-\n\
@deftypefn {} {} blkmm (@var{A}, @var{B})\n\
Compute products of matrix blocks.\n\
\n\
The blocks are given as 2-dimensional subarrays of the arrays @var{A},\n\
@var{B}.  The size of @var{A} must have the form @code{[m,k,@dots{}]} and\n\
size of @var{B} must be @code{[k,n,@dots{}]}.  The result is then of size\n\
@code{[m,n,@dots{}]} and is computed as follows:\n\
\n\
@example\n\
@group\n\
for i = 1:prod (size (@var{A})(3:end))\n\
  @var{C}(:,:,i) = @var{A}(:,:,i) * @var{B}(:,:,i)\n\
endfor\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  if (args.length () != 2)
    print_usage ();

  octave_value retval;

  octave_value argx = args(0);
  octave_value argy = args(1);

  if (! argx.is_numeric_type () || ! argy.is_numeric_type ())
    error ("blkmm: A and B must be numeric");

  const dim_vector dimx = argx.dims ();
  const dim_vector dimy = argy.dims ();
  int nd = dimx.length ();
  octave_idx_type m = dimx(0);
  octave_idx_type k = dimx(1);
  octave_idx_type n = dimy(1);
  octave_idx_type np = 1;
  bool match = dimy(0) == k && nd == dimy.length ();
  dim_vector dimz = dim_vector::alloc (nd);
  dimz(0) = m;
  dimz(1) = n;
  for (int i = 2; match && i < nd; i++)
    {
      match = match && dimx(i) == dimy(i);
      dimz(i) = dimx(i);
      np *= dimz(i);
    }

  if (! match)
    error ("blkmm: A and B dimensions don't match: (%s) and (%s)",
           dimx.str ().c_str (), dimy.str ().c_str ());

  if (argx.is_complex_type () || argy.is_complex_type ())
    {
      if (argx.is_single_type () || argy.is_single_type ())
        {
          FloatComplexNDArray x = argx.float_complex_array_value ();
          FloatComplexNDArray y = argy.float_complex_array_value ();
          FloatComplexNDArray z (dimz);

          F77_XFCN (cmatm3, CMATM3, (m, n, k, np,
                                     x.data (), y.data (),
                                     z.fortran_vec ()));
          retval = z;
        }
      else
        {
          ComplexNDArray x = argx.complex_array_value ();
          ComplexNDArray y = argy.complex_array_value ();
          ComplexNDArray z (dimz);

          F77_XFCN (zmatm3, ZMATM3, (m, n, k, np,
                                     x.data (), y.data (),
                                     z.fortran_vec ()));
          retval = z;
        }
    }
  else
    {
      if (argx.is_single_type () || argy.is_single_type ())
        {
          FloatNDArray x = argx.float_array_value ();
          FloatNDArray y = argy.float_array_value ();
          FloatNDArray z (dimz);

          F77_XFCN (smatm3, SMATM3, (m, n, k, np,
                                     x.data (), y.data (),
                                     z.fortran_vec ()));
          retval = z;
        }
      else
        {
          NDArray x = argx.array_value ();
          NDArray y = argy.array_value ();
          NDArray z (dimz);

          F77_XFCN (dmatm3, DMATM3, (m, n, k, np,
                                     x.data (), y.data (),
                                     z.fortran_vec ()));
          retval = z;
        }
    }

  return retval;
}

/*
%!test
%! x(:,:,1) = [1 2; 3 4];
%! x(:,:,2) = [1 1; 1 1];
%! z(:,:,1) = [7 10; 15 22];
%! z(:,:,2) = [2 2; 2 2];
%! assert (blkmm (x,x), z);
%! assert (blkmm (single (x), single (x)), single (z));
%! assert (blkmm (x, single (x)), single (z));

%!test
%! x(:,:,1) = [1 2; 3 4];
%! x(:,:,2) = [1i 1i; 1i 1i];
%! z(:,:,1) = [7 10; 15 22];
%! z(:,:,2) = [-2 -2; -2 -2];
%! assert (blkmm (x,x), z);
%! assert (blkmm (single (x), single (x)), single (z));
%! assert (blkmm (x, single (x)), single (z));

%% Test input validation
%!error blkmm ()
%!error blkmm (1)
%!error blkmm (1,2,3)
%!error <A and B dimensions don't match> blkmm (ones (2,2), ones (3,3))
%!error <A and B must be numeric> blkmm ({1,2}, [3,4])
%!error <A and B must be numeric> blkmm ([3,4], {1,2})
*/