view libinterp/corefcn/lsode.cc @ 21200:fcac5dbbf9ed

maint: Indent #ifdef blocks in libinterp. * builtins.h, Cell.cc, __contourc__.cc, __dispatch__.cc, __dsearchn__.cc, __ichol__.cc, __ilu__.cc, __lin_interpn__.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, besselj.cc, betainc.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, cellfun.cc, colloc.cc, comment-list.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, debug.cc, defaults.cc, defaults.in.h, defun-dld.h, defun.cc, defun.h, det.cc, dirfns.cc, display.cc, dlmread.cc, dot.cc, dynamic-ld.cc, eig.cc, ellipj.cc, error.cc, errwarn.cc, event-queue.cc, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl2ps-print.cc, graphics.cc, graphics.in.h, gripes.cc, hash.cc, help.cc, hess.cc, hex2num.cc, input.cc, inv.cc, jit-ir.cc, jit-typeinfo.cc, jit-util.cc, jit-util.h, kron.cc, load-path.cc, load-save.cc, lookup.cc, ls-ascii-helper.cc, ls-hdf5.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, ls-oct-binary.cc, ls-oct-text.cc, ls-oct-text.h, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, luinc.cc, mappers.cc, matrix_type.cc, max.cc, mex.h, mexproto.h, mgorth.cc, nproc.cc, oct-errno.in.cc, oct-fstrm.cc, oct-hdf5-types.cc, oct-hdf5.h, oct-hist.cc, oct-iostrm.cc, oct-lvalue.cc, oct-map.cc, oct-prcstrm.cc, oct-procbuf.cc, oct-stream.cc, oct-strstrm.cc, octave-link.cc, ordschur.cc, pager.cc, pinv.cc, pr-output.cc, procstream.cc, profiler.cc, psi.cc, pt-jit.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, sparse-xdiv.cc, sparse-xpow.cc, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, syscalls.cc, sysdep.cc, sysdep.h, time.cc, toplev.cc, tril.cc, tsearch.cc, txt-eng-ft.cc, txt-eng.cc, typecast.cc, urlwrite.cc, utils.cc, variables.cc, xdiv.cc, xnorm.cc, xpow.cc, zfstream.cc, __delaunayn__.cc, __eigs__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __magick_read__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, ccolamd.cc, chol.cc, colamd.cc, convhulln.cc, dmperm.cc, fftw.cc, oct-qhull.h, qr.cc, symbfact.cc, symrcm.cc, oct-conf.in.cc, ov-base-diag.cc, ov-base-int.cc, ov-base-mat.cc, ov-base-scalar.cc, ov-base-sparse.cc, ov-base.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-builtin.cc, ov-cell.cc, ov-ch-mat.cc, ov-class.cc, ov-classdef.cc, ov-colon.cc, ov-complex.cc, ov-cs-list.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-dld-fcn.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-fcn.cc, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-diag.cc, ov-flt-re-mat.cc, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-java.cc, ov-lazy-idx.cc, ov-mex-fcn.cc, ov-null-mat.cc, ov-oncleanup.cc, ov-perm.cc, ov-range.cc, ov-re-diag.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov.cc, ovl.cc, octave.cc, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-double-conv.cc, op-fcdm-fcdm.cc, op-fcdm-fdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-float-conv.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-int-conv.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, pt-arg-list.cc, pt-array-list.cc, pt-assign.cc, pt-binop.cc, pt-bp.cc, pt-cbinop.cc, pt-cell.cc, pt-check.cc, pt-classdef.cc, pt-cmd.cc, pt-colon.cc, pt-colon.h, pt-const.cc, pt-decl.cc, pt-eval.cc, pt-except.cc, pt-exp.cc, pt-fcn-handle.cc, pt-funcall.cc, pt-id.cc, pt-idx.cc, pt-jump.cc, pt-loop.cc, pt-mat.cc, pt-misc.cc, pt-pr-code.cc, pt-select.cc, pt-stmt.cc, pt-unop.cc, pt.cc, token.cc, Array-jit.cc, Array-os.cc, Array-sym.cc, Array-tc.cc, version.cc: Indent #ifdef blocks in libinterp.
author Rik <rik@octave.org>
date Fri, 05 Feb 2016 16:29:08 -0800
parents 3ac9f47fb04b
children 40de9f8f23a6
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <string>

#include <iomanip>
#include <iostream>

#include "LSODE.h"
#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "ov-fcn.h"
#include "ov-cell.h"
#include "pager.h"
#include "pr-output.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"

#include "LSODE-opts.cc"

// Global pointer for user defined function required by lsode.
static octave_function *lsode_fcn;

// Global pointer for optional user defined jacobian function used by lsode.
static octave_function *lsode_jac;

// Have we warned about imaginary values returned from user function?
static bool warned_fcn_imaginary = false;
static bool warned_jac_imaginary = false;

// Is this a recursive call?
static int call_depth = 0;

ColumnVector
lsode_user_function (const ColumnVector& x, double t)
{
  ColumnVector retval;

  octave_value_list args;
  args(1) = t;
  args(0) = x;

  if (lsode_fcn)
    {
      octave_value_list tmp;

      try
        {
          tmp = lsode_fcn->do_multi_index_op (1, args);
        }
      catch (octave_execution_exception& e)
        {
          err_user_supplied_eval (e, "lsode");
        }

      if (tmp.length () == 0 || ! tmp(0).is_defined ())
        err_user_supplied_eval ("lsode");

      if (! warned_fcn_imaginary && tmp(0).is_complex_type ())
        {
          warning ("lsode: ignoring imaginary part returned from user-supplied function");
          warned_fcn_imaginary = true;
        }

      retval = tmp(0).xvector_value ("lsode: expecting user supplied function to return numeric vector");

      if (retval.is_empty ())
        err_user_supplied_eval ("lsode");
    }

  return retval;
}

Matrix
lsode_user_jacobian (const ColumnVector& x, double t)
{
  Matrix retval;

  octave_value_list args;
  args(1) = t;
  args(0) = x;

  if (lsode_jac)
    {
      octave_value_list tmp;

      try
        {
          tmp = lsode_jac->do_multi_index_op (1, args);
        }
      catch (octave_execution_exception& e)
        {
          err_user_supplied_eval (e, "lsode");
        }

      if (tmp.length () == 0 || ! tmp(0).is_defined ())
        err_user_supplied_eval ("lsode");

      if (! warned_jac_imaginary && tmp(0).is_complex_type ())
        {
          warning ("lsode: ignoring imaginary part returned from user-supplied jacobian function");
          warned_jac_imaginary = true;
        }

      retval = tmp(0).xmatrix_value ("lsode: expecting user supplied jacobian function to return numeric array");

      if (retval.is_empty ())
        err_user_supplied_eval ("lsode");
    }

  return retval;
}

DEFUN (lsode, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t})\n\
@deftypefnx {} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t}, @var{t_crit})\n\
Ordinary Differential Equation (ODE) solver.\n\
\n\
The set of differential equations to solve is\n\
@tex\n\
$$ {dx \\over dt} = f (x, t) $$\n\
with\n\
$$ x(t_0) = x_0 $$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
dx\n\
-- = f (x, t)\n\
dt\n\
@end group\n\
@end example\n\
\n\
@noindent\n\
with\n\
\n\
@example\n\
x(t_0) = x_0\n\
@end example\n\
\n\
@end ifnottex\n\
The solution is returned in the matrix @var{x}, with each row\n\
corresponding to an element of the vector @var{t}.  The first element\n\
of @var{t} should be @math{t_0} and should correspond to the initial\n\
state of the system @var{x_0}, so that the first row of the output\n\
is @var{x_0}.\n\
\n\
The first argument, @var{fcn}, is a string, inline, or function handle\n\
that names the function @math{f} to call to compute the vector of right\n\
hand sides for the set of equations.  The function must have the form\n\
\n\
@example\n\
@var{xdot} = f (@var{x}, @var{t})\n\
@end example\n\
\n\
@noindent\n\
in which @var{xdot} and @var{x} are vectors and @var{t} is a scalar.\n\
\n\
If @var{fcn} is a two-element string array or a two-element cell array\n\
of strings, inline functions, or function handles, the first element names\n\
the function @math{f} described above, and the second element names a\n\
function to compute the Jacobian of @math{f}.  The Jacobian function\n\
must have the form\n\
\n\
@example\n\
@var{jac} = j (@var{x}, @var{t})\n\
@end example\n\
\n\
@noindent\n\
in which @var{jac} is the matrix of partial derivatives\n\
@tex\n\
$$ J = {\\partial f_i \\over \\partial x_j} = \\left[\\matrix{\n\
{\\partial f_1 \\over \\partial x_1}\n\
  & {\\partial f_1 \\over \\partial x_2}\n\
  & \\cdots\n\
  & {\\partial f_1 \\over \\partial x_N} \\cr\n\
{\\partial f_2 \\over \\partial x_1}\n\
  & {\\partial f_2 \\over \\partial x_2}\n\
  & \\cdots\n\
  & {\\partial f_2 \\over \\partial x_N} \\cr\n\
 \\vdots & \\vdots & \\ddots & \\vdots \\cr\n\
{\\partial f_3 \\over \\partial x_1}\n\
  & {\\partial f_3 \\over \\partial x_2}\n\
  & \\cdots\n\
  & {\\partial f_3 \\over \\partial x_N} \\cr}\\right]$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
             | df_1  df_1       df_1 |\n\
             | ----  ----  ...  ---- |\n\
             | dx_1  dx_2       dx_N |\n\
             |                       |\n\
             | df_2  df_2       df_2 |\n\
             | ----  ----  ...  ---- |\n\
      df_i   | dx_1  dx_2       dx_N |\n\
jac = ---- = |                       |\n\
      dx_j   |  .    .     .    .    |\n\
             |  .    .      .   .    |\n\
             |  .    .       .  .    |\n\
             |                       |\n\
             | df_N  df_N       df_N |\n\
             | ----  ----  ...  ---- |\n\
             | dx_1  dx_2       dx_N |\n\
@end group\n\
@end example\n\
\n\
@end ifnottex\n\
\n\
The second and third arguments specify the initial state of the system,\n\
@math{x_0}, and the initial value of the independent variable @math{t_0}.\n\
\n\
The fourth argument is optional, and may be used to specify a set of\n\
times that the ODE solver should not integrate past.  It is useful for\n\
avoiding difficulties with singularities and points where there is a\n\
discontinuity in the derivative.\n\
\n\
After a successful computation, the value of @var{istate} will be 2\n\
(consistent with the Fortran version of @sc{lsode}).\n\
\n\
If the computation is not successful, @var{istate} will be something\n\
other than 2 and @var{msg} will contain additional information.\n\
\n\
You can use the function @code{lsode_options} to set optional\n\
parameters for @code{lsode}.\n\
@seealso{daspk, dassl, dasrt}\n\
@end deftypefn")
{
  int nargin = args.length ();

  if (nargin < 3 || nargin > 4)
    print_usage ();

  warned_fcn_imaginary = false;
  warned_jac_imaginary = false;

  unwind_protect frame;

  frame.protect_var (call_depth);
  call_depth++;

  if (call_depth > 1)
    error ("lsode: invalid recursive call");

  std::string fcn_name, fname, jac_name, jname;
  lsode_fcn = 0;
  lsode_jac = 0;

  octave_value f_arg = args(0);

  if (f_arg.is_cell ())
    {
      Cell c = f_arg.cell_value ();
      if (c.numel () == 1)
        f_arg = c(0);
      else if (c.numel () == 2)
        {
          if (c(0).is_function_handle () || c(0).is_inline_function ())
            lsode_fcn = c(0).function_value ();
          else
            {
              fcn_name = unique_symbol_name ("__lsode_fcn__");
              fname = "function y = ";
              fname.append (fcn_name);
              fname.append (" (x, t) y = ");
              lsode_fcn = extract_function (c(0), "lsode", fcn_name, fname,
                                            "; endfunction");
            }

          if (lsode_fcn)
            {
              if (c(1).is_function_handle () || c(1).is_inline_function ())
                lsode_jac = c(1).function_value ();
              else
                {
                  jac_name = unique_symbol_name ("__lsode_jac__");
                  jname = "function jac = ";
                  jname.append (jac_name);
                  jname.append (" (x, t) jac = ");
                  lsode_jac = extract_function (c(1), "lsode", jac_name,
                                                jname, "; endfunction");

                  if (! lsode_jac)
                    {
                      if (fcn_name.length ())
                        clear_function (fcn_name);
                      lsode_fcn = 0;
                    }
                }
            }
        }
      else
        error ("lsode: incorrect number of elements in cell array");
    }

  if (! lsode_fcn && ! f_arg.is_cell ())
    {
      if (f_arg.is_function_handle () || f_arg.is_inline_function ())
        lsode_fcn = f_arg.function_value ();
      else
        {
          switch (f_arg.rows ())
            {
            case 1:
              do
                {
                  fcn_name = unique_symbol_name ("__lsode_fcn__");
                  fname = "function y = ";
                  fname.append (fcn_name);
                  fname.append (" (x, t) y = ");
                  lsode_fcn = extract_function (f_arg, "lsode", fcn_name,
                                                fname, "; endfunction");
                }
              while (0);
              break;

            case 2:
              {
                string_vector tmp = f_arg.string_vector_value ();

                fcn_name = unique_symbol_name ("__lsode_fcn__");
                fname = "function y = ";
                fname.append (fcn_name);
                fname.append (" (x, t) y = ");
                lsode_fcn = extract_function (tmp(0), "lsode", fcn_name,
                                              fname, "; endfunction");

                if (lsode_fcn)
                  {
                    jac_name = unique_symbol_name ("__lsode_jac__");
                    jname = "function jac = ";
                    jname.append (jac_name);
                    jname.append (" (x, t) jac = ");
                    lsode_jac = extract_function (tmp(1), "lsode",
                                                  jac_name, jname,
                                                  "; endfunction");

                    if (! lsode_jac)
                      {
                        if (fcn_name.length ())
                          clear_function (fcn_name);
                        lsode_fcn = 0;
                      }
                  }
              }
              break;

            default:
              error ("lsode: first arg should be a string or 2-element string array");
            }
        }
    }

  if (! lsode_fcn)
    error ("lsode: FCN argument is not a valid function name or handle");

  ColumnVector state = args(1).xvector_value ("lsode: initial state X_0 must be a vector");
  ColumnVector out_times = args(2).xvector_value ("lsode: output time variable T must be a vector");

  ColumnVector crit_times;

  int crit_times_set = 0;
  if (nargin > 3)
    {
      crit_times = args(3).xvector_value ("lsode: list of critical times T_CRIT must be a vector");

      crit_times_set = 1;
    }

  double tzero = out_times (0);

  ODEFunc func (lsode_user_function);
  if (lsode_jac)
    func.set_jacobian_function (lsode_user_jacobian);

  LSODE ode (state, tzero, func);

  ode.set_options (lsode_opts);

  Matrix output;
  if (crit_times_set)
    output = ode.integrate (out_times, crit_times);
  else
    output = ode.integrate (out_times);

  if (fcn_name.length ())
    clear_function (fcn_name);
  if (jac_name.length ())
    clear_function (jac_name);

  std::string msg = ode.error_message ();

  octave_value_list retval (3);

  if (ode.integration_ok ())
    retval(0) = output;
  else if (nargout < 2)
    error ("lsode: %s", msg.c_str ());
  else
    retval(0) = Matrix ();

  retval(1) = static_cast<double> (ode.integration_state ());
  retval(2) = msg;

  return retval;
}

/*

## dassl-1.m
##
## Test lsode() function
##
## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         20 May 1998
##
## Problem
##
##    y1' = -y2,   y1(0) = 1
##    y2' =  y1,   y2(0) = 0
##
## Solution
##
##    y1(t) = cos(t)
##    y2(t) = sin(t)
##
%!function xdot = __f (x, t)
%!  xdot = [-x(2); x(1)];
%!endfunction
%!test
%!
%! x0 = [1; 0];
%! xdot0 = [0; 1];
%! t = (0:1:10)';
%!
%! tol = 500 * lsode_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [cos(t), sin(t)];
%!
%! assert (x, y, tol);

%!function xdotdot = __f (x, t)
%!  xdotdot = [x(2); -x(1)];
%!endfunction
%!test
%!
%! x0 = [1; 0];
%! t = [0; 2*pi];
%! tol = 100 * dassl_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [1, 0; 1, 0];
%!
%! assert (x, y, tol);

%!function xdot = __f (x, t)
%!  xdot = x;
%!endfunction
%!test
%!
%! x0 = 1;
%! t = [0; 1];
%! tol = 100 * dassl_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [1; e];
%!
%! assert (x, y, tol);

%!test
%! lsode_options ("absolute tolerance", eps);
%! assert (lsode_options ("absolute tolerance") == eps);

%!error lsode_options ("foo", 1, 2)
*/