view libinterp/octave-value/ov-flt-cx-mat.cc @ 21200:fcac5dbbf9ed

maint: Indent #ifdef blocks in libinterp. * builtins.h, Cell.cc, __contourc__.cc, __dispatch__.cc, __dsearchn__.cc, __ichol__.cc, __ilu__.cc, __lin_interpn__.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, besselj.cc, betainc.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, cellfun.cc, colloc.cc, comment-list.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, debug.cc, defaults.cc, defaults.in.h, defun-dld.h, defun.cc, defun.h, det.cc, dirfns.cc, display.cc, dlmread.cc, dot.cc, dynamic-ld.cc, eig.cc, ellipj.cc, error.cc, errwarn.cc, event-queue.cc, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl2ps-print.cc, graphics.cc, graphics.in.h, gripes.cc, hash.cc, help.cc, hess.cc, hex2num.cc, input.cc, inv.cc, jit-ir.cc, jit-typeinfo.cc, jit-util.cc, jit-util.h, kron.cc, load-path.cc, load-save.cc, lookup.cc, ls-ascii-helper.cc, ls-hdf5.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, ls-oct-binary.cc, ls-oct-text.cc, ls-oct-text.h, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, luinc.cc, mappers.cc, matrix_type.cc, max.cc, mex.h, mexproto.h, mgorth.cc, nproc.cc, oct-errno.in.cc, oct-fstrm.cc, oct-hdf5-types.cc, oct-hdf5.h, oct-hist.cc, oct-iostrm.cc, oct-lvalue.cc, oct-map.cc, oct-prcstrm.cc, oct-procbuf.cc, oct-stream.cc, oct-strstrm.cc, octave-link.cc, ordschur.cc, pager.cc, pinv.cc, pr-output.cc, procstream.cc, profiler.cc, psi.cc, pt-jit.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, sparse-xdiv.cc, sparse-xpow.cc, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, syscalls.cc, sysdep.cc, sysdep.h, time.cc, toplev.cc, tril.cc, tsearch.cc, txt-eng-ft.cc, txt-eng.cc, typecast.cc, urlwrite.cc, utils.cc, variables.cc, xdiv.cc, xnorm.cc, xpow.cc, zfstream.cc, __delaunayn__.cc, __eigs__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __magick_read__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, ccolamd.cc, chol.cc, colamd.cc, convhulln.cc, dmperm.cc, fftw.cc, oct-qhull.h, qr.cc, symbfact.cc, symrcm.cc, oct-conf.in.cc, ov-base-diag.cc, ov-base-int.cc, ov-base-mat.cc, ov-base-scalar.cc, ov-base-sparse.cc, ov-base.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-builtin.cc, ov-cell.cc, ov-ch-mat.cc, ov-class.cc, ov-classdef.cc, ov-colon.cc, ov-complex.cc, ov-cs-list.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-dld-fcn.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-fcn.cc, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-diag.cc, ov-flt-re-mat.cc, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-java.cc, ov-lazy-idx.cc, ov-mex-fcn.cc, ov-null-mat.cc, ov-oncleanup.cc, ov-perm.cc, ov-range.cc, ov-re-diag.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov.cc, ovl.cc, octave.cc, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-double-conv.cc, op-fcdm-fcdm.cc, op-fcdm-fdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-float-conv.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-int-conv.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, pt-arg-list.cc, pt-array-list.cc, pt-assign.cc, pt-binop.cc, pt-bp.cc, pt-cbinop.cc, pt-cell.cc, pt-check.cc, pt-classdef.cc, pt-cmd.cc, pt-colon.cc, pt-colon.h, pt-const.cc, pt-decl.cc, pt-eval.cc, pt-except.cc, pt-exp.cc, pt-fcn-handle.cc, pt-funcall.cc, pt-id.cc, pt-idx.cc, pt-jump.cc, pt-loop.cc, pt-mat.cc, pt-misc.cc, pt-pr-code.cc, pt-select.cc, pt-stmt.cc, pt-unop.cc, pt.cc, token.cc, Array-jit.cc, Array-os.cc, Array-sym.cc, Array-tc.cc, version.cc: Indent #ifdef blocks in libinterp.
author Rik <rik@octave.org>
date Fri, 05 Feb 2016 16:29:08 -0800
parents 95f8c8cdbffe
children 2cf8bc5c7017
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2009-2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <iostream>
#include <vector>

#include "data-conv.h"
#include "lo-ieee.h"
#include "lo-specfun.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mach-info.h"
#include "oct-locbuf.h"

#include "errwarn.h"
#include "mxarray.h"
#include "ovl.h"
#include "oct-hdf5.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-complex.h"
#include "ov-flt-complex.h"
#include "ov-cx-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-scalar.h"
#include "ov-float.h"
#include "pr-output.h"
#include "ops.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-hdf5.h"
#include "ls-utils.h"

template class octave_base_matrix<FloatComplexNDArray>;


DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex_matrix,
                                     "float complex matrix", "single");

octave_base_value *
octave_float_complex_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = 0;

  if (matrix.numel () == 1)
    {
      FloatComplex c = matrix (0);

      if (std::imag (c) == 0.0)
        retval = new octave_float_scalar (std::real (c));
      else
        retval = new octave_float_complex (c);
    }
  else if (matrix.all_elements_are_real ())
    retval = new octave_float_matrix (::real (matrix));

  return retval;
}

double
octave_float_complex_matrix::double_value (bool force_conversion) const
{
  double retval = lo_ieee_nan_value ();

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  retval = std::real (matrix(0, 0));

  return retval;
}

float
octave_float_complex_matrix::float_value (bool force_conversion) const
{
  float retval = lo_ieee_float_nan_value ();

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  retval = std::real (matrix(0, 0));

  return retval;
}

Matrix
octave_float_complex_matrix::matrix_value (bool force_conversion) const
{
  Matrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (matrix));

  return retval;
}

FloatMatrix
octave_float_complex_matrix::float_matrix_value (bool force_conversion) const
{
  FloatMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (matrix));

  return retval;
}

Complex
octave_float_complex_matrix::complex_value (bool) const
{
  double tmp = lo_ieee_nan_value ();

  Complex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = matrix(0, 0);

  return retval;
}

FloatComplex
octave_float_complex_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = matrix(0, 0);

  return retval;
}

ComplexMatrix
octave_float_complex_matrix::complex_matrix_value (bool) const
{
  return FloatComplexMatrix (matrix);
}

FloatComplexMatrix
octave_float_complex_matrix::float_complex_matrix_value (bool) const
{
  return FloatComplexMatrix (matrix);
}

boolNDArray
octave_float_complex_matrix::bool_array_value (bool warn) const
{
  if (matrix.any_element_is_nan ())
    err_nan_to_logical_conversion ();
  if (warn && (! matrix.all_elements_are_real ()
               || real (matrix).any_element_not_one_or_zero ()))
    warn_logical_conversion ();

  return mx_el_ne (matrix, FloatComplex (0.0));
}

charNDArray
octave_float_complex_matrix::char_array_value (bool frc_str_conv) const
{
  charNDArray retval;

  if (! frc_str_conv)
    warn_implicit_conversion ("Octave:num-to-str",
                              "complex matrix", "string");
  else
    {
      retval = charNDArray (dims ());
      octave_idx_type nel = numel ();

      for (octave_idx_type i = 0; i < nel; i++)
        retval.elem (i) = static_cast<char>(std::real (matrix.elem (i)));
    }

  return retval;
}

FloatComplexNDArray
octave_float_complex_matrix::float_complex_array_value (bool) const
{
  return FloatComplexNDArray (matrix);
}

SparseMatrix
octave_float_complex_matrix::sparse_matrix_value (bool force_conversion) const
{
  SparseMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = SparseMatrix (::real (complex_matrix_value ()));

  return retval;
}

SparseComplexMatrix
octave_float_complex_matrix::sparse_complex_matrix_value (bool) const
{
  return SparseComplexMatrix (complex_matrix_value ());
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type k) const
{
  octave_value retval;
  if (k == 0 && matrix.ndims () == 2
      && (matrix.rows () == 1 || matrix.columns () == 1))
    retval = FloatComplexDiagMatrix (DiagArray2<FloatComplex> (matrix));
  else
    retval = octave_base_matrix<FloatComplexNDArray>::diag (k);

  return retval;
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type m, octave_idx_type n) const
{
  if (matrix.ndims () != 2
      || (matrix.rows () != 1 && matrix.columns () != 1))
    error ("diag: expecting vector argument");

  FloatComplexMatrix mat (matrix);

  return mat.diag (m, n);
}

bool
octave_float_complex_matrix::save_ascii (std::ostream& os)
{
  dim_vector d = dims ();
  if (d.length () > 2)
    {
      FloatComplexNDArray tmp = complex_array_value ();

      os << "# ndims: " << d.length () << "\n";

      for (int i = 0; i < d.length (); i++)
        os << " " << d(i);

      os << "\n" << tmp;
    }
  else
    {
      // Keep this case, rather than use generic code above for backward
      // compatibility.  Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      os << complex_matrix_value ();
    }

  return true;
}

bool
octave_float_complex_matrix::load_ascii (std::istream& is)
{
  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (! extract_keyword (is, keywords, kw, val, true))
    error ("load: failed to extract number of rows and columns");

  if (kw == "ndims")
    {
      int mdims = static_cast<int> (val);

      if (mdims < 0)
        error ("load: failed to extract number of dimensions");

      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        is >> dv(i);

      if (! is)
        error ("load: failed to read dimensions");

      FloatComplexNDArray tmp(dv);

      is >> tmp;

      if (! is)
        error ("load: failed to load matrix constant");

      matrix = tmp;
    }
  else if (kw == "rows")
    {
      octave_idx_type nr = val;
      octave_idx_type nc = 0;

      if (nr < 0 || ! extract_keyword (is, "columns", nc) || nc < 0)
        error ("load: failed to extract number of rows and columns");

      if (nr > 0 && nc > 0)
        {
          FloatComplexMatrix tmp (nr, nc);
          is >> tmp;
          if (! is)
            error ("load: failed to load matrix constant");

          matrix = tmp;
        }
      else if (nr == 0 || nc == 0)
        matrix = FloatComplexMatrix (nr, nc);
      else
        panic_impossible ();
    }
  else
    panic_impossible ();

  return true;
}

bool
octave_float_complex_matrix::save_binary (std::ostream& os, bool&)
{
  dim_vector d = dims ();
  if (d.length () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - d.length ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i = 0; i < d.length (); i++)
    {
      tmp = d(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  FloatComplexNDArray m = complex_array_value ();
  save_type st = LS_FLOAT;
  if (d.numel () > 4096) // FIXME: make this configurable.
    {
      float max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = get_save_type (max_val, min_val);
    }

  const FloatComplex *mtmp = m.data ();
  write_floats (os, reinterpret_cast<const float *> (mtmp), st, 2 * d.numel ());

  return true;
}

bool
octave_float_complex_matrix::load_binary (std::istream& is, bool swap,
                                          oct_mach_info::float_format fmt)
{
  char tmp;
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims < 0)
    {
      mdims = - mdims;
      int32_t di;
      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        {
          if (! is.read (reinterpret_cast<char *> (&di), 4))
            return false;
          if (swap)
            swap_bytes<4> (&di);
          dv(i) = di;
        }

      // Convert an array with a single dimension to be a row vector.
      // Octave should never write files like this, other software
      // might.

      if (mdims == 1)
        {
          mdims = 2;
          dv.resize (mdims);
          dv(1) = dv(0);
          dv(0) = 1;
        }

      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;

      FloatComplexNDArray m(dv);
      FloatComplex *im = m.fortran_vec ();
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2 * dv.numel (), swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  else
    {
      int32_t nr, nc;
      nr = mdims;
      if (! is.read (reinterpret_cast<char *> (&nc), 4))
        return false;
      if (swap)
        swap_bytes<4> (&nc);
      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;
      FloatComplexMatrix m (nr, nc);
      FloatComplex *im = m.fortran_vec ();
      octave_idx_type len = nr * nc;
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2*len, swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  return true;
}

bool
octave_float_complex_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name, bool)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.length ();
  hid_t space_hid, data_hid, type_hid;
  space_hid = data_hid = type_hid = -1;
  FloatComplexNDArray m = complex_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, 0);
  if (space_hid < 0) return false;

  hid_t save_type_hid = H5T_NATIVE_FLOAT;

#if HAVE_HDF5_INT2FLOAT_CONVERSIONS
  // hdf5 currently doesn't support float/integer conversions
  else
    {
      float max_val, min_val;

      if (m.all_integers (max_val, min_val))
        save_type_hid
          = save_type_to_hdf5 (get_save_type (max_val, min_val));
    }
#endif

  type_hid = hdf5_make_complex_type (save_type_hid);
  if (type_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }
#if HAVE_HDF5_18
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT, octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Tclose (type_hid);
      return false;
    }

  hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_FLOAT);
  if (complex_type_hid < 0) retval = false;

  if (retval)
    {
      FloatComplex *mtmp = m.fortran_vec ();
      if (H5Dwrite (data_hid, complex_type_hid, octave_H5S_ALL, octave_H5S_ALL, octave_H5P_DEFAULT,
                    mtmp) < 0)
        {
          H5Tclose (complex_type_hid);
          retval = false;
        }
    }

  H5Tclose (complex_type_hid);
  H5Dclose (data_hid);
  H5Tclose (type_hid);
  H5Sclose (space_hid);

#else
  warn_save ("hdf5");
#endif

  return retval;
}

bool
octave_float_complex_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if HAVE_HDF5_18
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t type_hid = H5Dget_type (data_hid);

  hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_FLOAT);

  if (! hdf5_types_compatible (type_hid, complex_type))
    {
      H5Tclose (complex_type);
      H5Dclose (data_hid);
      return false;
    }

  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Tclose (complex_type);
      H5Sclose (space_id);
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  FloatComplexNDArray m (dv);
  FloatComplex *reim = m.fortran_vec ();
  if (H5Dread (data_hid, complex_type, octave_H5S_ALL, octave_H5S_ALL, octave_H5P_DEFAULT,
               reim) >= 0)
    {
      retval = true;
      matrix = m;
    }

  H5Tclose (complex_type);
  H5Sclose (space_id);
  H5Dclose (data_hid);

#else
  warn_load ("hdf5");
#endif

  return retval;
}

void
octave_float_complex_matrix::print_raw (std::ostream& os,
                                        bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

mxArray *
octave_float_complex_matrix::as_mxArray (void) const
{
  mxArray *retval = new mxArray (mxSINGLE_CLASS, dims (), mxCOMPLEX);

  float *pr = static_cast<float *> (retval->get_data ());
  float *pi = static_cast<float *> (retval->get_imag_data ());

  mwSize nel = numel ();

  const FloatComplex *p = matrix.data ();

  for (mwIndex i = 0; i < nel; i++)
    {
      pr[i] = std::real (p[i]);
      pi[i] = std::imag (p[i]);
    }

  return retval;
}

octave_value
octave_float_complex_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    // Mappers handled specially.
    case umap_real:
      return ::real (matrix);
    case umap_imag:
      return ::imag (matrix);
    case umap_conj:
      return ::conj (matrix);

#define ARRAY_METHOD_MAPPER(UMAP, FCN) \
    case umap_ ## UMAP: \
      return octave_value (matrix.FCN ())

      ARRAY_METHOD_MAPPER (abs, abs);
      ARRAY_METHOD_MAPPER (isnan, isnan);
      ARRAY_METHOD_MAPPER (isinf, isinf);
      ARRAY_METHOD_MAPPER (isfinite, isfinite);

#define ARRAY_MAPPER(UMAP, TYPE, FCN) \
    case umap_ ## UMAP: \
      return octave_value (matrix.map<TYPE> (FCN))

      ARRAY_MAPPER (acos, FloatComplex, ::acos);
      ARRAY_MAPPER (acosh, FloatComplex, ::acosh);
      ARRAY_MAPPER (angle, float, std::arg);
      ARRAY_MAPPER (arg, float, std::arg);
      ARRAY_MAPPER (asin, FloatComplex, ::asin);
      ARRAY_MAPPER (asinh, FloatComplex, ::asinh);
      ARRAY_MAPPER (atan, FloatComplex, ::atan);
      ARRAY_MAPPER (atanh, FloatComplex, ::atanh);
      ARRAY_MAPPER (erf, FloatComplex, ::erf);
      ARRAY_MAPPER (erfc, FloatComplex, ::erfc);
      ARRAY_MAPPER (erfcx, FloatComplex, ::erfcx);
      ARRAY_MAPPER (erfi, FloatComplex, ::erfi);
      ARRAY_MAPPER (dawson, FloatComplex, ::dawson);
      ARRAY_MAPPER (ceil, FloatComplex, ::ceil);
      ARRAY_MAPPER (cos, FloatComplex, std::cos);
      ARRAY_MAPPER (cosh, FloatComplex, std::cosh);
      ARRAY_MAPPER (exp, FloatComplex, std::exp);
      ARRAY_MAPPER (expm1, FloatComplex, ::expm1);
      ARRAY_MAPPER (fix, FloatComplex, ::fix);
      ARRAY_MAPPER (floor, FloatComplex, ::floor);
      ARRAY_MAPPER (log, FloatComplex, std::log);
      ARRAY_MAPPER (log2, FloatComplex, xlog2);
      ARRAY_MAPPER (log10, FloatComplex, std::log10);
      ARRAY_MAPPER (log1p, FloatComplex, ::log1p);
      ARRAY_MAPPER (round, FloatComplex, xround);
      ARRAY_MAPPER (roundb, FloatComplex, xroundb);
      ARRAY_MAPPER (signum, FloatComplex, ::signum);
      ARRAY_MAPPER (sin, FloatComplex, std::sin);
      ARRAY_MAPPER (sinh, FloatComplex, std::sinh);
      ARRAY_MAPPER (sqrt, FloatComplex, std::sqrt);
      ARRAY_MAPPER (tan, FloatComplex, std::tan);
      ARRAY_MAPPER (tanh, FloatComplex, std::tanh);
      ARRAY_MAPPER (isna, bool, octave_is_NA);

    default:
      return octave_base_value::map (umap);
    }
}