view scripts/general/cplxpair.m @ 14363:f3d52523cde1

Use Octave coding conventions in all m-file %!test blocks * wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m, asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m, csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m, accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m, celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m, cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m, flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m, interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m, isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m, narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m, polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m, randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m, structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m, griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m, get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m, imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m, textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m, duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m, issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m, qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m, bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m, fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m, ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m, news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m, setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m, warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m, pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m, __plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m, colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m, ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m, ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m, orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m, refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m, stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m, deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m, ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m, fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m, sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m, pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m, sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m, beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m, nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m, realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m, vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m, iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m, median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m, range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m, statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m, betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m, cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m, chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m, expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m, gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m, hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m, laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m, logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m, lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m, norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m, poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m, tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m, unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m, wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m, strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m, substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m, asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m, eomday.m, etime.m, is_leap_year.m, now.m: Use Octave coding conventions in all m-file %!test blocks
author Rik <octave@nomad.inbox5.com>
date Mon, 13 Feb 2012 07:29:44 -0800
parents 11949c9795a0
children 86854d032a37
line wrap: on
line source

## Copyright (C) 2000-2012 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} cplxpair (@var{z})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim})
## Sort the numbers @var{z} into complex conjugate pairs ordered by
## increasing real part.  Place the negative imaginary complex number
## first within each pair.  Place all the real numbers (those with
## @code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the
## complex pairs.
##
## If @var{tol} is unspecified the default value is 100*@code{eps}.
##
## By default the complex pairs are sorted along the first non-singleton
## dimension of @var{z}.  If @var{dim} is specified, then the complex
## pairs are sorted along this dimension.
##
## Signal an error if some complex numbers could not be paired.  Signal an
## error if all complex numbers are not exact conjugates (to within
## @var{tol}).  Note that there is no defined order for pairs with identical
## real parts but differing imaginary parts.
## @c Set example in small font to prevent overfull line
##
## @smallexample
## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
## @end smallexample
## @end deftypefn

## FIXME: subsort returned pairs by imaginary magnitude
## FIXME: Why doesn't exp(2i*pi*[0:4]'/5) produce exact conjugates. Does
## FIXME:    it in Matlab?  The reason is that complex pairs are supposed
## FIXME:    to be exact conjugates, and not rely on a tolerance test.

## 2006-05-12 David Bateman - Modified for NDArrays

function y = cplxpair (z, tol, dim)

  if nargin < 1 || nargin > 3
    print_usage ();
  endif

  if (length (z) == 0)
    y = zeros (size (z));
    return;
  endif

  if (nargin < 2 || isempty (tol))
    if (isa (z, "single"))
      tol = 100 * eps("single");
    else
      tol = 100*eps;
    endif
  endif

  nd = ndims (z);
  orig_dims = size (z);
  if (nargin < 3)
    ## Find the first singleton dimension.
    dim = 0;
    while (dim < nd && orig_dims(dim+1) == 1)
      dim++;
    endwhile
    dim++;
    if (dim > nd)
      dim = 1;
    endif
  else
    dim = floor(dim);
    if (dim < 1 || dim > nd)
      error ("cplxpair: invalid dimension along which to sort");
    endif
  endif

  ## Move dimension to treat first, and convert to a 2-D matrix.
  perm = [dim:nd, 1:dim-1];
  z = permute (z, perm);
  sz = size (z);
  n = sz (1);
  m = prod (sz) / n;
  z = reshape (z, n, m);

  ## Sort the sequence in terms of increasing real values.
  [q, idx] = sort (real (z), 1);
  z = z(idx + n * ones (n, 1) * [0:m-1]);

  ## Put the purely real values at the end of the returned list.
  cls = "double";
  if (isa (z, "single"))
    cls = "single";
  endif
  [idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin(cls)) < tol);
  q = sparse (idxi, idxj, 1, n, m);
  nr = sum (q, 1);
  [q, idx] = sort (q, 1);
  z = z(idx);
  y = z;

  ## For each remaining z, place the value and its conjugate at the
  ## start of the returned list, and remove them from further
  ## consideration.
  for j = 1:m
    p = n - nr(j);
    for i = 1:2:p
      if (i+1 > p)
        error ("cplxpair: could not pair all complex numbers");
      endif
      [v, idx] = min (abs (z(i+1:p) - conj (z(i))));
      if (v > tol)
        error ("cplxpair: could not pair all complex numbers");
      endif
      if (imag (z(i)) < 0)
        y([i, i+1]) = z([i, idx+i]);
      else
        y([i, i+1]) = z([idx+i, i]);
      endif
      z(idx+i) = z(i+1);
    endfor
  endfor

  ## Reshape the output matrix.
  y = ipermute (reshape (y, sz), perm);

endfunction


%!demo
%! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ]

%!assert (isempty (cplxpair ([])))
%!assert (cplxpair (1), 1)
%!assert (cplxpair ([1+1i, 1-1i]), [1-1i, 1+1i])
%!assert (cplxpair ([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), ...
%!                  [1-1i, 1+1i, 1-1i, 1+1i, 1, 2])
%!assert (cplxpair ([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), ...
%!                  [1-1i; 1+1i; 1-1i; 1+1i; 1; 2])
%!assert (cplxpair ([0, 1, 2]), [0, 1, 2])

%!shared z
%! z = exp (2i*pi*[4; 3; 5; 2; 6; 1; 0]/7);
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))]), [z,z])
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))],[],1), [z,z])
%!assert (cplxpair ([z(randperm(7)).';z(randperm(7)).'],[],2), [z.';z.'])

%!## tolerance test
%!assert (cplxpair ([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)])