view scripts/optimization/pqpnonneg.m @ 14363:f3d52523cde1

Use Octave coding conventions in all m-file %!test blocks * wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m, asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m, csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m, accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m, celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m, cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m, flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m, interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m, isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m, narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m, polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m, randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m, structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m, griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m, get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m, imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m, textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m, duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m, issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m, qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m, bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m, fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m, ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m, news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m, setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m, warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m, pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m, __plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m, colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m, ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m, ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m, orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m, refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m, stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m, deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m, ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m, fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m, sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m, pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m, sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m, beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m, nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m, realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m, vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m, iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m, median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m, range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m, statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m, betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m, cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m, chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m, expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m, gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m, hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m, laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m, logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m, lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m, norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m, poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m, tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m, unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m, wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m, strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m, substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m, asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m, eomday.m, etime.m, is_leap_year.m, now.m: Use Octave coding conventions in all m-file %!test blocks
author Rik <octave@nomad.inbox5.com>
date Mon, 13 Feb 2012 07:29:44 -0800
parents 72c96de7a403
children b76f0740940e
line wrap: on
line source

## Copyright (C) 2008-2012 Bill Denney
## Copyright (C) 2008 Jaroslav Hajek
## Copyright (C) 2009 VZLU Prague
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{x} =} pqpnonneg (@var{c}, @var{d})
## @deftypefnx {Function File} {@var{x} =} pqpnonneg (@var{c}, @var{d}, @var{x0})
## @deftypefnx {Function File} {[@var{x}, @var{minval}] =} pqpnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{minval}, @var{exitflag}] =} pqpnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{minval}, @var{exitflag}, @var{output}] =} pqpnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{minval}, @var{exitflag}, @var{output}, @var{lambda}] =} pqpnonneg (@dots{})
## Minimize @code{1/2*x'*c*x + d'*x} subject to @code{@var{x} >= 0}.  @var{c}
## and @var{d} must be real, and @var{c} must be symmetric and positive
## definite.  @var{x0} is an optional initial guess for @var{x}.
##
## Outputs:
## @itemize @bullet
## @item minval
##
## The minimum attained model value, 1/2*xmin'*c*xmin + d'*xmin
##
## @item exitflag
##
## An indicator of convergence.  0 indicates that the iteration count
## was exceeded, and therefore convergence was not reached; >0 indicates
## that the algorithm converged.  (The algorithm is stable and will
## converge given enough iterations.)
##
## @item output
##
## A structure with two fields:
## @itemize @bullet
## @item "algorithm": The algorithm used ("nnls")
##
## @item "iterations": The number of iterations taken.
## @end itemize
##
## @item lambda
##
## Not implemented.
## @end itemize
## @seealso{optimset, lsqnonneg, qp}
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("pqpnonneg");

## This is analogical to the lsqnonneg implementation, which is
## implemented from Lawson and Hanson's 1973 algorithm on page
## 161 of Solving Least Squares Problems.
## It shares the convergence guarantees.

function [x, minval, exitflag, output, lambda] = pqpnonneg (c, d, x = [], options = struct ())

  if (nargin == 1 && ischar (c) && strcmp (c, 'defaults'))
    x = optimset ("MaxIter", 1e5);
    return
  endif

  if (! (nargin >= 2 && nargin <= 4 && ismatrix (c) && ismatrix (d) && isstruct (options)))
    print_usage ();
  endif

  ## Lawson-Hanson Step 1 (LH1): initialize the variables.
  m = rows (c);
  n = columns (c);
  if (m != n)
    error ("pqpnonneg: matrix must be square");
  endif

  if (isempty (x))
    ## Initial guess is 0s.
    x = zeros (n, 1);
  else
    ## ensure nonnegative guess.
    x = max (x, 0);
  endif

  max_iter = optimget (options, "MaxIter", 1e5);

  ## Initialize P, according to zero pattern of x.
  p = find (x > 0).';
  ## Initialize the Cholesky factorization.
  r = chol (c(p, p));
  usechol = true;

  iter = 0;

  ## LH3: test for completion.
  while (iter < max_iter)
    while (iter < max_iter)
      iter++;

      ## LH6: compute the positive matrix and find the min norm solution
      ## of the positive problem.
      if (usechol)
        xtmp = -(r \ (r' \ d(p)));
      else
        xtmp = -(c(p,p) \ d(p));
      endif
      idx = find (xtmp < 0);

      if (isempty (idx))
        ## LH7: tmp solution found, iterate.
        x(:) = 0;
        x(p) = xtmp;
        break;
      else
        ## LH8, LH9: find the scaling factor.
        pidx = p(idx);
        sf = x(pidx)./(x(pidx) - xtmp(idx));
        alpha = min (sf);
        ## LH10: adjust X.
        xx = zeros (n, 1);
        xx(p) = xtmp;
        x += alpha*(xx - x);
        ## LH11: move from P to Z all X == 0.
        ## This corresponds to those indices where minimum of sf is attained.
        idx = idx (sf == alpha);
        p(idx) = [];
        if (usechol)
          ## update the Cholesky factorization.
          r = choldelete (r, idx);
        endif
      endif
    endwhile

    ## compute the gradient.
    w = -(d + c*x);
    w(p) = [];
    if (! any (w > 0))
      if (usechol)
        ## verify the solution achieved using qr updating.
        ## in the best case, this should only take a single step.
        usechol = false;
        continue;
      else
        ## we're finished.
        break;
      endif
    endif

    ## find the maximum gradient.
    idx = find (w == max (w));
    if (numel (idx) > 1)
      warning ("pqpnonneg:nonunique",
               "a non-unique solution may be returned due to equal gradients");
      idx = idx(1);
    endif
    ## move the index from Z to P. Keep P sorted.
    z = [1:n]; z(p) = [];
    zidx = z(idx);
    jdx = 1 + lookup (p, zidx);
    p = [p(1:jdx-1), zidx, p(jdx:end)];
    if (usechol)
      ## insert the column into the Cholesky factorization.
      [r, bad] = cholinsert (r, jdx, c(p,zidx));
      if (bad)
        ## If the insertion failed, we switch off updates and go on.
        usechol = false;
      endif
    endif

  endwhile
  ## LH12: complete.

  ## Generate the additional output arguments.
  if (nargout > 1)
    minval = 1/2*(x'*c*x) + d'*x;
  endif
  exitflag = iter;
  if (nargout > 2 && iter >= max_iter)
    exitflag = 0;
  endif
  if (nargout > 3)
    output = struct ("algorithm", "nnls-pqp", "iterations", iter);
  endif
  if (nargout > 4)
    lambda = zeros (size (x));
    lambda(p) = w;
  endif

endfunction


%!test
%! C = [5 2;2 2];
%! d = [3; -1];
%! assert (pqpnonneg (C, d), [0;0.5], 100*eps);

## Test equivalence of lsq and pqp
%!test
%! C = rand (20, 10);
%! d = rand (20, 1);
%! assert (pqpnonneg (C'*C, -C'*d), lsqnonneg (C, d), 100*eps);