comparison libcruft/lapack/cgelsy.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
comparison
equal deleted inserted replaced
7788:45f5faba05a2 7789:82be108cc558
1 SUBROUTINE CGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
2 $ WORK, LWORK, RWORK, INFO )
3 *
4 * -- LAPACK driver routine (version 3.1) --
5 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
6 * November 2006
7 *
8 * .. Scalar Arguments ..
9 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
10 REAL RCOND
11 * ..
12 * .. Array Arguments ..
13 INTEGER JPVT( * )
14 REAL RWORK( * )
15 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
16 * ..
17 *
18 * Purpose
19 * =======
20 *
21 * CGELSY computes the minimum-norm solution to a complex linear least
22 * squares problem:
23 * minimize || A * X - B ||
24 * using a complete orthogonal factorization of A. A is an M-by-N
25 * matrix which may be rank-deficient.
26 *
27 * Several right hand side vectors b and solution vectors x can be
28 * handled in a single call; they are stored as the columns of the
29 * M-by-NRHS right hand side matrix B and the N-by-NRHS solution
30 * matrix X.
31 *
32 * The routine first computes a QR factorization with column pivoting:
33 * A * P = Q * [ R11 R12 ]
34 * [ 0 R22 ]
35 * with R11 defined as the largest leading submatrix whose estimated
36 * condition number is less than 1/RCOND. The order of R11, RANK,
37 * is the effective rank of A.
38 *
39 * Then, R22 is considered to be negligible, and R12 is annihilated
40 * by unitary transformations from the right, arriving at the
41 * complete orthogonal factorization:
42 * A * P = Q * [ T11 0 ] * Z
43 * [ 0 0 ]
44 * The minimum-norm solution is then
45 * X = P * Z' [ inv(T11)*Q1'*B ]
46 * [ 0 ]
47 * where Q1 consists of the first RANK columns of Q.
48 *
49 * This routine is basically identical to the original xGELSX except
50 * three differences:
51 * o The permutation of matrix B (the right hand side) is faster and
52 * more simple.
53 * o The call to the subroutine xGEQPF has been substituted by the
54 * the call to the subroutine xGEQP3. This subroutine is a Blas-3
55 * version of the QR factorization with column pivoting.
56 * o Matrix B (the right hand side) is updated with Blas-3.
57 *
58 * Arguments
59 * =========
60 *
61 * M (input) INTEGER
62 * The number of rows of the matrix A. M >= 0.
63 *
64 * N (input) INTEGER
65 * The number of columns of the matrix A. N >= 0.
66 *
67 * NRHS (input) INTEGER
68 * The number of right hand sides, i.e., the number of
69 * columns of matrices B and X. NRHS >= 0.
70 *
71 * A (input/output) COMPLEX array, dimension (LDA,N)
72 * On entry, the M-by-N matrix A.
73 * On exit, A has been overwritten by details of its
74 * complete orthogonal factorization.
75 *
76 * LDA (input) INTEGER
77 * The leading dimension of the array A. LDA >= max(1,M).
78 *
79 * B (input/output) COMPLEX array, dimension (LDB,NRHS)
80 * On entry, the M-by-NRHS right hand side matrix B.
81 * On exit, the N-by-NRHS solution matrix X.
82 *
83 * LDB (input) INTEGER
84 * The leading dimension of the array B. LDB >= max(1,M,N).
85 *
86 * JPVT (input/output) INTEGER array, dimension (N)
87 * On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
88 * to the front of AP, otherwise column i is a free column.
89 * On exit, if JPVT(i) = k, then the i-th column of A*P
90 * was the k-th column of A.
91 *
92 * RCOND (input) REAL
93 * RCOND is used to determine the effective rank of A, which
94 * is defined as the order of the largest leading triangular
95 * submatrix R11 in the QR factorization with pivoting of A,
96 * whose estimated condition number < 1/RCOND.
97 *
98 * RANK (output) INTEGER
99 * The effective rank of A, i.e., the order of the submatrix
100 * R11. This is the same as the order of the submatrix T11
101 * in the complete orthogonal factorization of A.
102 *
103 * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
104 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
105 *
106 * LWORK (input) INTEGER
107 * The dimension of the array WORK.
108 * The unblocked strategy requires that:
109 * LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
110 * where MN = min(M,N).
111 * The block algorithm requires that:
112 * LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
113 * where NB is an upper bound on the blocksize returned
114 * by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR,
115 * and CUNMRZ.
116 *
117 * If LWORK = -1, then a workspace query is assumed; the routine
118 * only calculates the optimal size of the WORK array, returns
119 * this value as the first entry of the WORK array, and no error
120 * message related to LWORK is issued by XERBLA.
121 *
122 * RWORK (workspace) REAL array, dimension (2*N)
123 *
124 * INFO (output) INTEGER
125 * = 0: successful exit
126 * < 0: if INFO = -i, the i-th argument had an illegal value
127 *
128 * Further Details
129 * ===============
130 *
131 * Based on contributions by
132 * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
133 * E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
134 * G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
135 *
136 * =====================================================================
137 *
138 * .. Parameters ..
139 INTEGER IMAX, IMIN
140 PARAMETER ( IMAX = 1, IMIN = 2 )
141 REAL ZERO, ONE
142 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
143 COMPLEX CZERO, CONE
144 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
145 $ CONE = ( 1.0E+0, 0.0E+0 ) )
146 * ..
147 * .. Local Scalars ..
148 LOGICAL LQUERY
149 INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
150 $ NB, NB1, NB2, NB3, NB4
151 REAL ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
152 $ SMLNUM, WSIZE
153 COMPLEX C1, C2, S1, S2
154 * ..
155 * .. External Subroutines ..
156 EXTERNAL CCOPY, CGEQP3, CLAIC1, CLASCL, CLASET, CTRSM,
157 $ CTZRZF, CUNMQR, CUNMRZ, SLABAD, XERBLA
158 * ..
159 * .. External Functions ..
160 INTEGER ILAENV
161 REAL CLANGE, SLAMCH
162 EXTERNAL CLANGE, ILAENV, SLAMCH
163 * ..
164 * .. Intrinsic Functions ..
165 INTRINSIC ABS, MAX, MIN, REAL, CMPLX
166 * ..
167 * .. Executable Statements ..
168 *
169 MN = MIN( M, N )
170 ISMIN = MN + 1
171 ISMAX = 2*MN + 1
172 *
173 * Test the input arguments.
174 *
175 INFO = 0
176 NB1 = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
177 NB2 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 )
178 NB3 = ILAENV( 1, 'CUNMQR', ' ', M, N, NRHS, -1 )
179 NB4 = ILAENV( 1, 'CUNMRQ', ' ', M, N, NRHS, -1 )
180 NB = MAX( NB1, NB2, NB3, NB4 )
181 LWKOPT = MAX( 1, MN+2*N+NB*(N+1), 2*MN+NB*NRHS )
182 WORK( 1 ) = CMPLX( LWKOPT )
183 LQUERY = ( LWORK.EQ.-1 )
184 IF( M.LT.0 ) THEN
185 INFO = -1
186 ELSE IF( N.LT.0 ) THEN
187 INFO = -2
188 ELSE IF( NRHS.LT.0 ) THEN
189 INFO = -3
190 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
191 INFO = -5
192 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
193 INFO = -7
194 ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND.
195 $ .NOT.LQUERY ) THEN
196 INFO = -12
197 END IF
198 *
199 IF( INFO.NE.0 ) THEN
200 CALL XERBLA( 'CGELSY', -INFO )
201 RETURN
202 ELSE IF( LQUERY ) THEN
203 RETURN
204 END IF
205 *
206 * Quick return if possible
207 *
208 IF( MIN( M, N, NRHS ).EQ.0 ) THEN
209 RANK = 0
210 RETURN
211 END IF
212 *
213 * Get machine parameters
214 *
215 SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
216 BIGNUM = ONE / SMLNUM
217 CALL SLABAD( SMLNUM, BIGNUM )
218 *
219 * Scale A, B if max entries outside range [SMLNUM,BIGNUM]
220 *
221 ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
222 IASCL = 0
223 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
224 *
225 * Scale matrix norm up to SMLNUM
226 *
227 CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
228 IASCL = 1
229 ELSE IF( ANRM.GT.BIGNUM ) THEN
230 *
231 * Scale matrix norm down to BIGNUM
232 *
233 CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
234 IASCL = 2
235 ELSE IF( ANRM.EQ.ZERO ) THEN
236 *
237 * Matrix all zero. Return zero solution.
238 *
239 CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
240 RANK = 0
241 GO TO 70
242 END IF
243 *
244 BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
245 IBSCL = 0
246 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
247 *
248 * Scale matrix norm up to SMLNUM
249 *
250 CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
251 IBSCL = 1
252 ELSE IF( BNRM.GT.BIGNUM ) THEN
253 *
254 * Scale matrix norm down to BIGNUM
255 *
256 CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
257 IBSCL = 2
258 END IF
259 *
260 * Compute QR factorization with column pivoting of A:
261 * A * P = Q * R
262 *
263 CALL CGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
264 $ LWORK-MN, RWORK, INFO )
265 WSIZE = MN + REAL( WORK( MN+1 ) )
266 *
267 * complex workspace: MN+NB*(N+1). real workspace 2*N.
268 * Details of Householder rotations stored in WORK(1:MN).
269 *
270 * Determine RANK using incremental condition estimation
271 *
272 WORK( ISMIN ) = CONE
273 WORK( ISMAX ) = CONE
274 SMAX = ABS( A( 1, 1 ) )
275 SMIN = SMAX
276 IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
277 RANK = 0
278 CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
279 GO TO 70
280 ELSE
281 RANK = 1
282 END IF
283 *
284 10 CONTINUE
285 IF( RANK.LT.MN ) THEN
286 I = RANK + 1
287 CALL CLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
288 $ A( I, I ), SMINPR, S1, C1 )
289 CALL CLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
290 $ A( I, I ), SMAXPR, S2, C2 )
291 *
292 IF( SMAXPR*RCOND.LE.SMINPR ) THEN
293 DO 20 I = 1, RANK
294 WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
295 WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
296 20 CONTINUE
297 WORK( ISMIN+RANK ) = C1
298 WORK( ISMAX+RANK ) = C2
299 SMIN = SMINPR
300 SMAX = SMAXPR
301 RANK = RANK + 1
302 GO TO 10
303 END IF
304 END IF
305 *
306 * complex workspace: 3*MN.
307 *
308 * Logically partition R = [ R11 R12 ]
309 * [ 0 R22 ]
310 * where R11 = R(1:RANK,1:RANK)
311 *
312 * [R11,R12] = [ T11, 0 ] * Y
313 *
314 IF( RANK.LT.N )
315 $ CALL CTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
316 $ LWORK-2*MN, INFO )
317 *
318 * complex workspace: 2*MN.
319 * Details of Householder rotations stored in WORK(MN+1:2*MN)
320 *
321 * B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
322 *
323 CALL CUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
324 $ WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
325 WSIZE = MAX( WSIZE, 2*MN+REAL( WORK( 2*MN+1 ) ) )
326 *
327 * complex workspace: 2*MN+NB*NRHS.
328 *
329 * B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
330 *
331 CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
332 $ NRHS, CONE, A, LDA, B, LDB )
333 *
334 DO 40 J = 1, NRHS
335 DO 30 I = RANK + 1, N
336 B( I, J ) = CZERO
337 30 CONTINUE
338 40 CONTINUE
339 *
340 * B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
341 *
342 IF( RANK.LT.N ) THEN
343 CALL CUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
344 $ N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
345 $ WORK( 2*MN+1 ), LWORK-2*MN, INFO )
346 END IF
347 *
348 * complex workspace: 2*MN+NRHS.
349 *
350 * B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
351 *
352 DO 60 J = 1, NRHS
353 DO 50 I = 1, N
354 WORK( JPVT( I ) ) = B( I, J )
355 50 CONTINUE
356 CALL CCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
357 60 CONTINUE
358 *
359 * complex workspace: N.
360 *
361 * Undo scaling
362 *
363 IF( IASCL.EQ.1 ) THEN
364 CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
365 CALL CLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
366 $ INFO )
367 ELSE IF( IASCL.EQ.2 ) THEN
368 CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
369 CALL CLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
370 $ INFO )
371 END IF
372 IF( IBSCL.EQ.1 ) THEN
373 CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
374 ELSE IF( IBSCL.EQ.2 ) THEN
375 CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
376 END IF
377 *
378 70 CONTINUE
379 WORK( 1 ) = CMPLX( LWKOPT )
380 *
381 RETURN
382 *
383 * End of CGELSY
384 *
385 END