view doc/interpreter/optim.txi @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 00f796120a6d
children 597f3ee61a48
line wrap: on
line source

@c Copyright (C) 1996-2022 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Optimization
@chapter Optimization

Octave comes with support for solving various kinds of optimization
problems.  Specifically Octave can solve problems in Linear Programming,
Quadratic Programming, Nonlinear Programming, and Linear Least Squares
Minimization.

@menu
* Linear Programming::
* Quadratic Programming::
* Nonlinear Programming::
* Linear Least Squares::
@end menu

@c @cindex linear programming
@cindex quadratic programming
@cindex nonlinear programming
@cindex optimization
@cindex LP
@cindex QP
@cindex NLP

@node Linear Programming
@section Linear Programming

Octave can solve Linear Programming problems using the @code{glpk}
function.  That is, Octave can solve

@tex
$$
  \min_x c^T x
$$
@end tex
@ifnottex

@example
min C'*x
@end example

@end ifnottex
subject to the linear constraints
@tex
$Ax = b$ where $x \geq 0$.
@end tex
@ifnottex
@math{A*x = b} where @math{x @geq{} 0}.
@end ifnottex

@noindent
The @code{glpk} function also supports variations of this problem.

@DOCSTRING(glpk)

@node Quadratic Programming
@section Quadratic Programming

Octave can also solve Quadratic Programming problems, this is
@tex
$$
 \min_x {1 \over 2} x^T H x + x^T q
$$
@end tex
@ifnottex

@example
min 0.5 x'*H*x + x'*q
@end example

@end ifnottex
subject to
@tex
$$
 A x = b \qquad lb \leq x \leq ub \qquad A_{lb} \leq A_{in} x \leq A_{ub}
$$
@end tex
@ifnottex

@example
@group
     A*x = b
     lb <= x <= ub
     A_lb <= A_in*x <= A_ub
@end group
@end example

@end ifnottex

@DOCSTRING(qp)

@DOCSTRING(pqpnonneg)

@node Nonlinear Programming
@section Nonlinear Programming

Octave can also perform general nonlinear minimization using a
successive quadratic programming solver.

@DOCSTRING(sqp)

@node Linear Least Squares
@section Linear Least Squares

Octave also supports linear least squares minimization.  That is,
Octave can find the parameter @math{b} such that the model
@tex
$y = xb$
@end tex
@ifnottex
@math{y = x*b}
@end ifnottex
fits data @math{(x,y)} as well as possible, assuming zero-mean
Gaussian noise.  If the noise is assumed to be isotropic the problem
can be solved using the @samp{\} or @samp{/} operators, or the @code{ols}
function.  In the general case where the noise is assumed to be anisotropic
the @code{gls} is needed.

@DOCSTRING(ols)

@DOCSTRING(gls)

@DOCSTRING(lsqnonneg)

@DOCSTRING(lscov)

@DOCSTRING(optimset)

@DOCSTRING(optimget)