view libinterp/corefcn/dot.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 58f3f8b086f4
children 08b08b7f05b2
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2009-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-blas-proto.h"
#include "mx-base.h"

#include "builtin-defun-decls.h"
#include "defun.h"
#include "error.h"
#include "parse.h"

OCTAVE_NAMESPACE_BEGIN

static void
get_red_dims (const dim_vector& x, const dim_vector& y, int dim,
              dim_vector& z, F77_INT& m, F77_INT& n, F77_INT& k)
{
  int nd = x.ndims ();
  assert (nd == y.ndims ());
  z = dim_vector::alloc (nd);
  octave_idx_type tmp_m = 1;
  octave_idx_type tmp_n = 1;
  octave_idx_type tmp_k = 1;
  for (int i = 0; i < nd; i++)
    {
      if (i < dim)
        {
          z(i) = x(i);
          tmp_m *= x(i);
        }
      else if (i > dim)
        {
          z(i) = x(i);
          tmp_n *= x(i);
        }
      else
        {
          z(i) = 1;
          tmp_k = x(i);
        }
    }

  m = to_f77_int (tmp_m);
  n = to_f77_int (tmp_n);
  k = to_f77_int (tmp_k);
}

DEFUN (dot, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {} dot (@var{x}, @var{y}, @var{dim})
Compute the dot product of two vectors.

If @var{x} and @var{y} are matrices, calculate the dot products along the
first non-singleton dimension.

If the optional argument @var{dim} is given, calculate the dot products
along this dimension.

Implementation Note: This is equivalent to
@code{sum (conj (@var{X}) .* @var{Y}, @var{dim})}, but avoids forming a
temporary array and is faster.  When @var{X} and @var{Y} are column vectors,
the result is equivalent to @code{@var{X}' * @var{Y}}.  Although, @code{dot}
is defined for integer arrays, the output may differ from the expected result
due to the limited range of integer objects.
@seealso{cross, divergence}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    print_usage ();

  octave_value retval;
  octave_value argx = args(0);
  octave_value argy = args(1);

  if (! argx.isnumeric () || ! argy.isnumeric ())
    error ("dot: X and Y must be numeric");

  dim_vector dimx = argx.dims ();
  dim_vector dimy = argy.dims ();
  bool match = dimx == dimy;
  if (! match && nargin == 2 && dimx.isvector () && dimy.isvector ())
    {
      // Change to column vectors.
      dimx = dimx.redim (1);
      argx = argx.reshape (dimx);
      dimy = dimy.redim (1);
      argy = argy.reshape (dimy);
      match = dimx == dimy;
    }

  if (! match)
    error ("dot: sizes of X and Y must match");

  int dim;
  if (nargin == 2)
    dim = dimx.first_non_singleton ();
  else
    dim = args(2).int_value (true) - 1;

  if (dim < 0)
    error ("dot: DIM must be a valid dimension");

  F77_INT m, n, k;
  dim_vector dimz;
  if (argx.iscomplex () || argy.iscomplex ())
    {
      if (argx.is_single_type () || argy.is_single_type ())
        {
          FloatComplexNDArray x = argx.float_complex_array_value ();
          FloatComplexNDArray y = argy.float_complex_array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          FloatComplexNDArray z (dimz);

          F77_XFCN (cdotc3, CDOTC3, (m, n, k,
                                     F77_CONST_CMPLX_ARG (x.data ()), F77_CONST_CMPLX_ARG (y.data ()),
                                     F77_CMPLX_ARG (z.fortran_vec ())));
          retval = z;
        }
      else
        {
          ComplexNDArray x = argx.complex_array_value ();
          ComplexNDArray y = argy.complex_array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          ComplexNDArray z (dimz);

          F77_XFCN (zdotc3, ZDOTC3, (m, n, k,
                                     F77_CONST_DBLE_CMPLX_ARG (x.data ()), F77_CONST_DBLE_CMPLX_ARG (y.data ()),
                                     F77_DBLE_CMPLX_ARG (z.fortran_vec ())));
          retval = z;
        }
    }
  else if (argx.isfloat () && argy.isfloat ())
    {
      if (argx.is_single_type () || argy.is_single_type ())
        {
          FloatNDArray x = argx.float_array_value ();
          FloatNDArray y = argy.float_array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          FloatNDArray z (dimz);

          F77_XFCN (sdot3, SDOT3, (m, n, k, x.data (), y.data (),
                                   z.fortran_vec ()));
          retval = z;
        }
      else
        {
          NDArray x = argx.array_value ();
          NDArray y = argy.array_value ();
          get_red_dims (dimx, dimy, dim, dimz, m, n, k);
          NDArray z (dimz);

          F77_XFCN (ddot3, DDOT3, (m, n, k, x.data (), y.data (),
                                   z.fortran_vec ()));
          retval = z;
        }
    }
  else
    {
      // Non-optimized evaluation.
      // FIXME: This may *not* do what the user expects.
      // It might be more useful to issue a warning, or even an error, instead
      // of calculating possibly garbage results.
      // Think of the dot product of two int8 vectors where the multiplications
      // exceed intmax.
      octave_value_list tmp;
      tmp(1) = dim + 1;
      tmp(0) = binary_op (octave_value::op_el_mul, argx, argy);

      tmp = Fsum (tmp, 1);
      if (! tmp.empty ())
        retval = tmp(0);
    }

  return retval;
}

/*
%!assert (dot ([1, 2], [2, 3]), 8)

%!test
%! x = [2, 1; 2, 1];
%! y = [-0.5, 2; 0.5, -2];
%! assert (dot (x, y), [0 0]);
%! assert (dot (single (x), single (y)), single ([0 0]));

%!test
%! x = [1+i, 3-i; 1-i, 3-i];
%! assert (dot (x, x), [4, 20]);
%! assert (dot (single (x), single (x)), single ([4, 20]));

%!test
%! x = int8 ([1, 2]);
%! y = int8 ([2, 3]);
%! assert (dot (x, y), 8);

%!test
%! x = int8 ([1, 2; 3, 4]);
%! y = int8 ([5, 6; 7, 8]);
%! assert (dot (x, y), [26 44]);
%! assert (dot (x, y, 2), [17; 53]);
%! assert (dot (x, y, 3), [5 12; 21 32]);

## This is, perhaps, surprising.  Integer maximums and saturation mechanics
## prevent accurate value from being calculated.
%!test
%! x = int8 ([127]);
%! assert (dot (x, x), 127);

## Test input validation
%!error dot ()
%!error dot (1)
%!error dot (1,2,3,4)
%!error <X and Y must be numeric> dot ({1,2}, [3,4])
%!error <X and Y must be numeric> dot ([1,2], {3,4})
%!error <sizes of X and Y must match> dot ([1 2], [1 2 3])
%!error <sizes of X and Y must match> dot ([1 2]', [1 2 3]')
%!error <sizes of X and Y must match> dot (ones (2,2), ones (2,3))
%!error <DIM must be a valid dimension> dot ([1 2], [1 2], 0)
*/

template <typename T>
static void
blkmm_internal (const T& x, const T& y, T& z,
                F77_INT m, F77_INT n, F77_INT k, F77_INT np);

template <>
void
blkmm_internal (const FloatComplexNDArray& x, const FloatComplexNDArray& y,
                FloatComplexNDArray& z,
                F77_INT m, F77_INT n, F77_INT k, F77_INT np)
{
  F77_XFCN (cmatm3, CMATM3, (m, n, k, np,
                             F77_CONST_CMPLX_ARG (x.data ()),
                             F77_CONST_CMPLX_ARG (y.data ()),
                             F77_CMPLX_ARG (z.fortran_vec ())));
}

template <>
void
blkmm_internal (const ComplexNDArray& x, const ComplexNDArray& y,
                ComplexNDArray& z,
                F77_INT m, F77_INT n, F77_INT k, F77_INT np)
{
  F77_XFCN (zmatm3, ZMATM3, (m, n, k, np,
                             F77_CONST_DBLE_CMPLX_ARG (x.data ()),
                             F77_CONST_DBLE_CMPLX_ARG (y.data ()),
                             F77_DBLE_CMPLX_ARG (z.fortran_vec ())));
}

template <>
void
blkmm_internal (const FloatNDArray& x, const FloatNDArray& y, FloatNDArray& z,
                F77_INT m, F77_INT n, F77_INT k, F77_INT np)
{
  F77_XFCN (smatm3, SMATM3, (m, n, k, np,
                             x.data (), y.data (),
                             z.fortran_vec ()));
}

template <>
void
blkmm_internal (const NDArray& x, const NDArray& y, NDArray& z,
                F77_INT m, F77_INT n, F77_INT k, F77_INT np)
{
  F77_XFCN (dmatm3, DMATM3, (m, n, k, np,
                             x.data (), y.data (),
                             z.fortran_vec ()));
}

static void
get_blkmm_dims (const dim_vector& dimx, const dim_vector& dimy,
                F77_INT& m, F77_INT& n, F77_INT& k, F77_INT& np,
                dim_vector& dimz)
{
  int nd = dimx.ndims ();

  m = to_f77_int (dimx(0));
  k = to_f77_int (dimx(1));
  n = to_f77_int (dimy(1));

  octave_idx_type tmp_np = 1;

  bool match = ((dimy(0) == k) && (nd == dimy.ndims ()));

  dimz = dim_vector::alloc (nd);

  dimz(0) = m;
  dimz(1) = n;
  for (int i = 2; match && i < nd; i++)
    {
      match = (dimx(i) == dimy(i));
      dimz(i) = dimx(i);
      tmp_np *= dimz(i);
    }

  np = to_f77_int (tmp_np);

  if (! match)
    error ("blkmm: A and B dimensions don't match: (%s) and (%s)",
           dimx.str ().c_str (), dimy.str ().c_str ());
}

template <typename T>
T
do_blkmm (const octave_value& xov, const octave_value& yov)
{
  const T x = octave_value_extract<T> (xov);
  const T y = octave_value_extract<T> (yov);
  F77_INT m, n, k, np;
  dim_vector dimz;

  get_blkmm_dims (x.dims (), y.dims (), m, n, k, np, dimz);

  T z (dimz);

  if (n != 0 && m != 0)
    blkmm_internal<T> (x, y, z, m, n, k, np);

  return z;
}

DEFUN (blkmm, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {} blkmm (@var{A}, @var{B})
Compute products of matrix blocks.

The blocks are given as 2-dimensional subarrays of the arrays @var{A},
@var{B}.  The size of @var{A} must have the form @code{[m,k,@dots{}]} and
size of @var{B} must be @code{[k,n,@dots{}]}.  The result is then of size
@code{[m,n,@dots{}]} and is computed as follows:

@example
@group
for i = 1:prod (size (@var{A})(3:end))
  @var{C}(:,:,i) = @var{A}(:,:,i) * @var{B}(:,:,i)
endfor
@end group
@end example
@end deftypefn */)
{
  if (args.length () != 2)
    print_usage ();

  octave_value retval;

  octave_value argx = args(0);
  octave_value argy = args(1);

  if (! argx.isnumeric () || ! argy.isnumeric ())
    error ("blkmm: A and B must be numeric");

  if (argx.iscomplex () || argy.iscomplex ())
    {
      if (argx.is_single_type () || argy.is_single_type ())
        retval = do_blkmm<FloatComplexNDArray> (argx, argy);
      else
        retval = do_blkmm<ComplexNDArray> (argx, argy);
    }
  else
    {
      if (argx.is_single_type () || argy.is_single_type ())
        retval = do_blkmm<FloatNDArray> (argx, argy);
      else
        retval = do_blkmm<NDArray> (argx, argy);
    }

  return retval;
}

/*
%!test
%! x(:,:,1) = [1 2; 3 4];
%! x(:,:,2) = [1 1; 1 1];
%! z(:,:,1) = [7 10; 15 22];
%! z(:,:,2) = [2 2; 2 2];
%! assert (blkmm (x,x), z);
%! assert (blkmm (single (x), single (x)), single (z));
%! assert (blkmm (x, single (x)), single (z));

%!test
%! x(:,:,1) = [1 2; 3 4];
%! x(:,:,2) = [1i 1i; 1i 1i];
%! z(:,:,1) = [7 10; 15 22];
%! z(:,:,2) = [-2 -2; -2 -2];
%! assert (blkmm (x,x), z);
%! assert (blkmm (single (x), single (x)), single (z));
%! assert (blkmm (x, single (x)), single (z));

%!test <*54261>
%! x = ones (0, 3, 3);
%! y = ones (3, 5, 3);
%! z = blkmm (x,y);
%! assert (size (z), [0, 5, 3]);
%! x = ones (1, 3, 3);
%! y = ones (3, 0, 3);
%! z = blkmm (x,y);
%! assert (size (z), [1, 0, 3]);

## Test input validation
%!error blkmm ()
%!error blkmm (1)
%!error blkmm (1,2,3)
%!error <A and B must be numeric> blkmm ({1,2}, [3,4])
%!error <A and B must be numeric> blkmm ([3,4], {1,2})
%!error <A and B dimensions don't match> blkmm (ones (2,2), ones (3,3))
*/

OCTAVE_NAMESPACE_END