view libinterp/corefcn/kron.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 32c3a5805893
children 08b08b7f05b2
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"

#include "dSparse.h"
#include "CSparse.h"

#include "dDiagMatrix.h"
#include "fDiagMatrix.h"
#include "CDiagMatrix.h"
#include "fCDiagMatrix.h"

#include "PermMatrix.h"

#include "mx-inlines.cc"
#include "quit.h"

#include "defun.h"
#include "error.h"
#include "ovl.h"

OCTAVE_NAMESPACE_BEGIN

template <typename R, typename T>
static MArray<T>
kron (const MArray<R>& a, const MArray<T>& b)
{
  assert (a.ndims () == 2);
  assert (b.ndims () == 2);

  octave_idx_type nra = a.rows ();
  octave_idx_type nrb = b.rows ();
  octave_idx_type nca = a.cols ();
  octave_idx_type ncb = b.cols ();

  MArray<T> c (dim_vector (nra*nrb, nca*ncb));
  T *cv = c.fortran_vec ();

  for (octave_idx_type ja = 0; ja < nca; ja++)
    {
      octave_quit ();
      for (octave_idx_type jb = 0; jb < ncb; jb++)
        {
          for (octave_idx_type ia = 0; ia < nra; ia++)
            {
              mx_inline_mul (nrb, cv, a(ia, ja), b.data () + nrb*jb);
              cv += nrb;
            }
        }
    }

  return c;
}

template <typename R, typename T>
static MArray<T>
kron (const MDiagArray2<R>& a, const MArray<T>& b)
{
  assert (b.ndims () == 2);

  octave_idx_type nra = a.rows ();
  octave_idx_type nrb = b.rows ();
  octave_idx_type dla = a.diag_length ();
  octave_idx_type nca = a.cols ();
  octave_idx_type ncb = b.cols ();

  MArray<T> c (dim_vector (nra*nrb, nca*ncb), T ());

  for (octave_idx_type ja = 0; ja < dla; ja++)
    {
      octave_quit ();
      for (octave_idx_type jb = 0; jb < ncb; jb++)
        {
          mx_inline_mul (nrb, &c.xelem (ja*nrb, ja*ncb + jb), a.dgelem (ja),
                         b.data () + nrb*jb);
        }
    }

  return c;
}

template <typename T>
static MSparse<T>
kron (const MSparse<T>& A, const MSparse<T>& B)
{
  octave_idx_type idx = 0;
  MSparse<T> C (A.rows () * B.rows (), A.columns () * B.columns (),
                A.nnz () * B.nnz ());

  C.cidx (0) = 0;

  for (octave_idx_type Aj = 0; Aj < A.columns (); Aj++)
    {
      octave_quit ();
      for (octave_idx_type Bj = 0; Bj < B.columns (); Bj++)
        {
          for (octave_idx_type Ai = A.cidx (Aj); Ai < A.cidx (Aj+1); Ai++)
            {
              octave_idx_type Ci = A.ridx (Ai) * B.rows ();
              const T v = A.data (Ai);

              for (octave_idx_type Bi = B.cidx (Bj); Bi < B.cidx (Bj+1); Bi++)
                {
                  C.data (idx) = v * B.data (Bi);
                  C.ridx (idx++) = Ci + B.ridx (Bi);
                }
            }
          C.cidx (Aj * B.columns () + Bj + 1) = idx;
        }
    }

  return C;
}

static PermMatrix
kron (const PermMatrix& a, const PermMatrix& b)
{
  octave_idx_type na = a.rows ();
  octave_idx_type nb = b.rows ();
  const Array<octave_idx_type>& pa = a.col_perm_vec ();
  const Array<octave_idx_type>& pb = b.col_perm_vec ();
  Array<octave_idx_type> res_perm (dim_vector (na * nb, 1));
  octave_idx_type rescol = 0;
  for (octave_idx_type i = 0; i < na; i++)
    {
      octave_idx_type a_add = pa(i) * nb;
      for (octave_idx_type j = 0; j < nb; j++)
        res_perm.xelem (rescol++) = a_add + pb(j);
    }

  return PermMatrix (res_perm, true);
}

template <typename MTA, typename MTB>
octave_value
do_kron (const octave_value& a, const octave_value& b)
{
  MTA am = octave_value_extract<MTA> (a);
  MTB bm = octave_value_extract<MTB> (b);

  return octave_value (kron (am, bm));
}

octave_value
dispatch_kron (const octave_value& a, const octave_value& b)
{
  octave_value retval;
  if (a.is_perm_matrix () && b.is_perm_matrix ())
    retval = do_kron<PermMatrix, PermMatrix> (a, b);
  else if (a.issparse () || b.issparse ())
    {
      if (a.iscomplex () || b.iscomplex ())
        retval = do_kron<SparseComplexMatrix, SparseComplexMatrix> (a, b);
      else
        retval = do_kron<SparseMatrix, SparseMatrix> (a, b);
    }
  else if (a.is_diag_matrix ())
    {
      if (b.is_diag_matrix () && a.rows () == a.columns ()
          && b.rows () == b.columns ())
        {
          // We have two diagonal matrices, the product of those will be
          // another diagonal matrix.  To do that efficiently, extract
          // the diagonals as vectors and compute the product.  That
          // will be another vector, which we then use to construct a
          // diagonal matrix object.  Note that this will fail if our
          // digaonal matrix object is modified to allow the nonzero
          // values to be stored off of the principal diagonal (i.e., if
          // diag ([1,2], 3) is modified to return a diagonal matrix
          // object instead of a full matrix object).

          octave_value tmp = dispatch_kron (a.diag (), b.diag ());
          retval = tmp.diag ();
        }
      else if (a.is_single_type () || b.is_single_type ())
        {
          if (a.iscomplex ())
            retval = do_kron<FloatComplexDiagMatrix, FloatComplexMatrix> (a, b);
          else if (b.iscomplex ())
            retval = do_kron<FloatDiagMatrix, FloatComplexMatrix> (a, b);
          else
            retval = do_kron<FloatDiagMatrix, FloatMatrix> (a, b);
        }
      else
        {
          if (a.iscomplex ())
            retval = do_kron<ComplexDiagMatrix, ComplexMatrix> (a, b);
          else if (b.iscomplex ())
            retval = do_kron<DiagMatrix, ComplexMatrix> (a, b);
          else
            retval = do_kron<DiagMatrix, Matrix> (a, b);
        }
    }
  else if (a.is_single_type () || b.is_single_type ())
    {
      if (a.iscomplex ())
        retval = do_kron<FloatComplexMatrix, FloatComplexMatrix> (a, b);
      else if (b.iscomplex ())
        retval = do_kron<FloatMatrix, FloatComplexMatrix> (a, b);
      else
        retval = do_kron<FloatMatrix, FloatMatrix> (a, b);
    }
  else
    {
      if (a.iscomplex ())
        retval = do_kron<ComplexMatrix, ComplexMatrix> (a, b);
      else if (b.iscomplex ())
        retval = do_kron<Matrix, ComplexMatrix> (a, b);
      else
        retval = do_kron<Matrix, Matrix> (a, b);
    }
  return retval;
}


DEFUN (kron, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} kron (@var{A}, @var{B})
@deftypefnx {} {} kron (@var{A1}, @var{A2}, @dots{})
Form the Kronecker product of two or more matrices.

This is defined block by block as

@example
x = [ a(i,j)*b ]
@end example

For example:

@example
@group
kron (1:4, ones (3, 1))
     @result{}  1  2  3  4
         1  2  3  4
         1  2  3  4
@end group
@end example

If there are more than two input arguments @var{A1}, @var{A2}, @dots{},
@var{An} the Kronecker product is computed as

@example
kron (kron (@var{A1}, @var{A2}), @dots{}, @var{An})
@end example

@noindent
Since the Kronecker product is associative, this is well-defined.
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2)
    print_usage ();

  octave_value retval;

  octave_value a = args(0);
  octave_value b = args(1);

  retval = dispatch_kron (a, b);

  for (octave_idx_type i = 2; i < nargin; i++)
    retval = dispatch_kron (retval, args(i));

  return retval;
}

/*
%!test
%! x = ones (2);
%! assert (kron (x, x), ones (4));

%!shared x, y, z, p1, p2, d1, d2
%! x =  [1, 2];
%! y =  [-1, -2];
%! z =  [1,  2,  3,  4; 1,  2,  3,  4; 1,  2,  3,  4];
%! p1 = eye (3)([2, 3, 1], :);  ## Permutation matrix
%! p2 = [0 1 0; 0 0 1; 1 0 0];  ## Non-permutation equivalent
%! d1 = diag ([1 2 3]);         ## Diag type matrix
%! d2 = [1 0 0; 0 2 0; 0 0 3];  ## Non-diag equivalent
%!assert (kron (1:4, ones (3, 1)), z)
%!assert (kron (single (1:4), ones (3, 1)), single (z))
%!assert (kron (sparse (1:4), ones (3, 1)), sparse (z))
%!assert (kron (complex (1:4), ones (3, 1)), z)
%!assert (kron (complex (single (1:4)), ones (3, 1)), single (z))
%!assert (kron (x, y, z), kron (kron (x, y), z))
%!assert (kron (x, y, z), kron (x, kron (y, z)))
%!assert (kron (p1, p1), kron (p2, p2))
%!assert (kron (p1, p2), kron (p2, p1))
%!assert (kron (d1, d1), kron (d2, d2))
%!assert (kron (d1, d2), kron (d2, d1))

%!assert (kron (diag ([1, 2]), diag ([3, 4])), diag ([3, 4, 6, 8]))

## Test for two diag matrices.
## See the comments above in dispatch_kron for this case.
%!test
%! expected = zeros (16, 16);
%! expected (1, 11) = 3;
%! expected (2, 12) = 4;
%! expected (5, 15) = 6;
%! expected (6, 16) = 8;
%! assert (kron (diag ([1, 2], 2), diag ([3, 4], 2)), expected);
*/

OCTAVE_NAMESPACE_END