view liboctave/array/fCRowVector.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 0a5b15007766
children 597f3ee61a48
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1994-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <istream>
#include <ostream>
#include <type_traits>

#include "Array-util.h"
#include "lo-blas-proto.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// FloatComplex Row Vector class

bool
FloatComplexRowVector::operator == (const FloatComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  if (len != a.numel ())
    return 0;
  return mx_inline_equal (len, data (), a.data ());
}

bool
FloatComplexRowVector::operator != (const FloatComplexRowVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

FloatComplexRowVector&
FloatComplexRowVector::insert (const FloatRowVector& a, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::insert (const FloatComplexRowVector& a,
                               octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (float val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (const FloatComplex& val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (float val, octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (const FloatComplex& val,
                             octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector
FloatComplexRowVector::append (const FloatRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  FloatComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

FloatComplexRowVector
FloatComplexRowVector::append (const FloatComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  FloatComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

FloatComplexColumnVector
FloatComplexRowVector::hermitian (void) const
{
  return MArray<FloatComplex>::hermitian (std::conj);
}

FloatComplexColumnVector
FloatComplexRowVector::transpose (void) const
{
  return MArray<FloatComplex>::transpose ();
}

FloatComplexRowVector
conj (const FloatComplexRowVector& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float>> (a);
}

// resize is the destructive equivalent for this one

FloatComplexRowVector
FloatComplexRowVector::extract (octave_idx_type c1, octave_idx_type c2) const
{
  if (c1 > c2) { std::swap (c1, c2); }

  octave_idx_type new_c = c2 - c1 + 1;

  FloatComplexRowVector result (new_c);

  for (octave_idx_type i = 0; i < new_c; i++)
    result.elem (i) = elem (c1+i);

  return result;
}

FloatComplexRowVector
FloatComplexRowVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  FloatComplexRowVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// row vector by row vector -> row vector operations

FloatComplexRowVector&
FloatComplexRowVector::operator += (const FloatRowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator +=", len, a_len);

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_add2 (len, d, a.data ());
  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::operator -= (const FloatRowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator -=", len, a_len);

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_sub2 (len, d, a.data ());
  return *this;
}

// row vector by matrix -> row vector

FloatComplexRowVector
operator * (const FloatComplexRowVector& v, const FloatComplexMatrix& a)
{
  FloatComplexRowVector retval;

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_nr = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (a_nr != len)
    octave::err_nonconformant ("operator *", 1, len, a_nr, a_nc);

  if (len == 0)
    retval.resize (a_nc, 0.0);
  else
    {
      // Transpose A to form A'*x == (x'*A)'

      F77_INT ld = a_nr;

      retval.resize (a_nc);
      FloatComplex *y = retval.fortran_vec ();

      F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("T", 1),
                               a_nr, a_nc, 1.0, F77_CONST_CMPLX_ARG (a.data ()),
                               ld, F77_CONST_CMPLX_ARG (v.data ()), 1, 0.0, F77_CMPLX_ARG (y), 1
                               F77_CHAR_ARG_LEN (1)));
    }

  return retval;
}

FloatComplexRowVector
operator * (const FloatRowVector& v, const FloatComplexMatrix& a)
{
  FloatComplexRowVector tmp (v);
  return tmp * a;
}

// other operations

FloatComplex
FloatComplexRowVector::min (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return FloatComplex (0.0);

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

FloatComplex
FloatComplexRowVector::max (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return FloatComplex (0.0);

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexRowVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.numel (); i++)
    os << ' ' /* setw (field_width) */ << a.elem (i);
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexRowVector& a)
{
  octave_idx_type len = a.numel ();

  if (len > 0)
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}

// row vector by column vector -> scalar

// row vector by column vector -> scalar

FloatComplex
operator * (const FloatComplexRowVector& v, const FloatColumnVector& a)
{
  FloatComplexColumnVector tmp (a);
  return v * tmp;
}

FloatComplex
operator * (const FloatComplexRowVector& v, const FloatComplexColumnVector& a)
{
  FloatComplex retval (0.0, 0.0);

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (len != a_len)
    octave::err_nonconformant ("operator *", len, a_len);

  if (len != 0)
    F77_FUNC (xcdotu, XCDOTU) (len, F77_CONST_CMPLX_ARG (v.data ()), 1,
                               F77_CONST_CMPLX_ARG (a.data ()), 1, F77_CMPLX_ARG (&retval));

  return retval;
}

// other operations

FloatComplexRowVector
linspace (const FloatComplex& x1, const FloatComplex& x2, octave_idx_type n_in)
{
  FloatComplexRowVector retval;

  if (n_in < 1)
    return retval;
  else if (n_in == 1)
    {
      retval.resize (1, x2);
      return retval;
    }

  // Use unsigned type (guaranteed n_in > 1 at this point) so that divisions
  // by 2 can be replaced by compiler with shift right instructions.
  typedef std::make_unsigned<octave_idx_type>::type unsigned_octave_idx_type;

  unsigned_octave_idx_type n = n_in;

  // Set endpoints, rather than calculate, for maximum accuracy.
  retval.clear (n);
  retval.xelem (0) = x1;
  retval.xelem (n-1) = x2;

  // Construct linspace symmetrically from both ends.
  FloatComplex delta = (x2 - x1) / (n - 1.0f);
  unsigned_octave_idx_type n2 = n/2;
  for (unsigned_octave_idx_type i = 1; i < n2; i++)
    {
      retval.xelem (i) = x1 + static_cast<float> (i)*delta;
      retval.xelem (n-1-i) = x2 - static_cast<float> (i)*delta;
    }
  if (n % 2 == 1)  // Middle element if number of elements is odd.
    retval.xelem (n2) = (x1 == -x2 ? 0 : (x1 + x2) / 2.0f);

  return retval;
}