view liboctave/numeric/lo-mappers.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 0a5b15007766
children 014030798d5e
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-mappers.h"
#include "lo-specfun.h"
#include "math-wrappers.h"

// FIXME: We used to have this situation:
//
//   Functions that forward to gnulib belong here so we can keep
//   gnulib:: out of lo-mappers.h.
//
// but now we just use std:: and explicit wrappers in C++ code so maybe
// some of the forwarding functions can be defined inline here.

namespace octave
{
  namespace math
  {
    bool
    isna (double x)
    {
      return lo_ieee_is_NA (x);
    }

    bool
    isna (const Complex& x)
    {
      return (isna (std::real (x)) || isna (std::imag (x)));
    }

    bool
    isna (float x)
    {
      return lo_ieee_is_NA (x);
    }

    bool
    isna (const FloatComplex& x)
    {
      return (isna (std::real (x)) || isna (std::imag (x)));
    }

    bool
    is_NaN_or_NA (const Complex& x)
    {
      return (isnan (std::real (x)) || isnan (std::imag (x)));
    }

    bool
    is_NaN_or_NA (const FloatComplex& x)
    {
      return (isnan (std::real (x)) || isnan (std::imag (x)));
    }

    // Matlab returns a different phase for acos, asin then std library
    // which requires a small function to remap the phase.
    Complex
    acos (const Complex& x)
    {
      Complex y = std::acos (x);

      if (std::imag (x) == 0.0 && std::real (x) > 1.0)
        return std::conj (y);
      else
        return y;
    }

    FloatComplex
    acos (const FloatComplex& x)
    {
      FloatComplex y = std::acos (x);

      if (std::imag (x) == 0.0f && std::real (x) > 1.0f)
        return std::conj (y);
      else
        return y;
    }

    Complex
    asin (const Complex& x)
    {
      Complex y = std::asin (x);

      if (std::imag (x) == 0.0 && std::real (x) > 1.0)
        return std::conj (y);
      else
        return y;
    }

    FloatComplex
    asin (const FloatComplex& x)
    {
      FloatComplex y = std::asin (x);

      if (std::imag (x) == 0.0f && std::real (x) > 1.0f)
        return std::conj (y);
      else
        return y;
    }

    double frexp (double x, int *expptr)
    {
      return octave_frexp_wrapper (x, expptr);
    }

    float frexp (float x, int *expptr)
    {
      return octave_frexpf_wrapper (x, expptr);
    }

    Complex
    log2 (const Complex& x)
    {
      return std::log (x) / M_LN2;
    }

    FloatComplex
    log2 (const FloatComplex& x)
    {
      return std::log (x) / static_cast<float> (M_LN2);
    }

    double
    log2 (double x, int& exp)
    {
      return frexp (x, &exp);
    }

    float
    log2 (float x, int& exp)
    {
      return frexp (x, &exp);
    }

    Complex
    log2 (const Complex& x, int& exp)
    {
      double ax = std::abs (x);
      double lax = log2 (ax, exp);
      return (ax != lax) ? (x / ax) * lax : x;
    }

    FloatComplex
    log2 (const FloatComplex& x, int& exp)
    {
      float ax = std::abs (x);
      float lax = log2 (ax, exp);
      return (ax != lax) ? (x / ax) * lax : x;
    }

    bool negative_sign (double x) { return __lo_ieee_signbit (x); }
    bool negative_sign (float x) { return __lo_ieee_float_signbit (x); }

    // Sometimes you need a large integer, but not always.

    octave_idx_type
    nint_big (double x)
    {
      if (x > std::numeric_limits<octave_idx_type>::max ())
        return std::numeric_limits<octave_idx_type>::max ();
      else if (x < std::numeric_limits<octave_idx_type>::min ())
        return std::numeric_limits<octave_idx_type>::min ();
      else
        return static_cast<octave_idx_type> ((x > 0.0) ? (x + 0.5)
                                                       : (x - 0.5));
    }

    octave_idx_type
    nint_big (float x)
    {
      if (x > std::numeric_limits<octave_idx_type>::max ())
        return std::numeric_limits<octave_idx_type>::max ();
      else if (x < std::numeric_limits<octave_idx_type>::min ())
        return std::numeric_limits<octave_idx_type>::min ();
      else
        return static_cast<octave_idx_type> ((x > 0.0f) ? (x + 0.5f)
                                                        : (x - 0.5f));
    }

    int
    nint (double x)
    {
      if (x > std::numeric_limits<int>::max ())
        return std::numeric_limits<int>::max ();
      else if (x < std::numeric_limits<int>::min ())
        return std::numeric_limits<int>::min ();
      else
        return static_cast<int> ((x > 0.0) ? (x + 0.5) : (x - 0.5));
    }

    int
    nint (float x)
    {
      if (x > std::numeric_limits<int>::max ())
        return std::numeric_limits<int>::max ();
      else if (x < std::numeric_limits<int>::min ())
        return std::numeric_limits<int>::min ();
      else
        return static_cast<int> ((x > 0.0f) ? (x + 0.5f) : (x - 0.5f));
    }

    Complex
    rc_acos (double x)
    {
      return fabs (x) > 1.0 ? acos (Complex (x)) : Complex (std::acos (x));
    }

    FloatComplex
    rc_acos (float x)
    {
      return fabsf (x) > 1.0f ? acos (FloatComplex (x))
                              : FloatComplex (std::acos (x));
    }

    Complex
    rc_acosh (double x)
    {
      return x < 1.0 ? acosh (Complex (x)) : Complex (acosh (x));
    }

    FloatComplex
    rc_acosh (float x)
    {
      return x < 1.0f ? acosh (FloatComplex (x)) : FloatComplex (acosh (x));
    }

    Complex
    rc_asin (double x)
    {
      return fabs (x) > 1.0 ? asin (Complex (x)) : Complex (std::asin (x));
    }

    FloatComplex
    rc_asin (float x)
    {
      return fabsf (x) > 1.0f ? asin (FloatComplex (x))
                              : FloatComplex (::asinf (x));
    }

    Complex
    rc_atanh (double x)
    {
      return fabs (x) > 1.0 ? atanh (Complex (x)) : Complex (atanh (x));
    }

    FloatComplex
    rc_atanh (float x)
    {
      return fabsf (x) > 1.0f ? atanh (FloatComplex (x))
                              : FloatComplex (atanh (x));
    }

    Complex
    rc_log (double x)
    {
      return x < 0.0 ? Complex (std::log (-x), M_PI) : Complex (std::log (x));
    }

    FloatComplex
    rc_log (float x)
    {
      return x < 0.0f ? FloatComplex (std::log (-x), static_cast<float> (M_PI))
                      : FloatComplex (std::log (x));
    }

    Complex
    rc_log2 (double x)
    {
      constexpr double PI_LN2 = 4.53236014182719380962;  // = pi / log(2)
      return x < 0.0 ? Complex (log2 (-x), PI_LN2) : Complex (log2 (x));
    }

    FloatComplex
    rc_log2 (float x)
    {
      constexpr float PI_LN2 = 4.53236014182719380962f;  // = pi / log(2)
      return x < 0.0f ? FloatComplex (log2 (-x), PI_LN2)
                      : FloatComplex (log2 (x));
    }

    Complex
    rc_log10 (double x)
    {
      constexpr double PI_LN10 = 1.36437635384184134748;  // = pi / log(10)
      return x < 0.0 ? Complex (log10 (-x), PI_LN10) : Complex (log10 (x));
    }

    FloatComplex
    rc_log10 (float x)
    {
      constexpr float PI_LN10 = 1.36437635384184134748f;  // = pi / log(10)
      return x < 0.0f ? FloatComplex (log10 (-x), PI_LN10)
                      : FloatComplex (log10f (x));
    }

    Complex
    rc_sqrt (double x)
    {
      return x < 0.0 ? Complex (0.0, std::sqrt (-x)) : Complex (std::sqrt (x));
    }

    FloatComplex
    rc_sqrt (float x)
    {
      return x < 0.0f ? FloatComplex (0.0f, std::sqrt (-x))
                      : FloatComplex (std::sqrt (x));
    }
  }
}