view liboctave/util/oct-inttypes.h @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents bd67d0045e21
children 4efd735d034c
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2004-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_oct_inttypes_h)
#define octave_oct_inttypes_h 1

#include "octave-config.h"

#include <cmath>
#include <cstdlib>

#include <iosfwd>
#include <limits>

#include "lo-mappers.h"
#include "lo-traits.h"
#include "oct-inttypes-fwd.h"

#if defined (OCTAVE_INT_USE_LONG_DOUBLE)

namespace octave
{
  namespace math
  {
    inline long double round (long double x)
    {
      return std::roundl (x);
    }

    inline long double isnan (long double x)
    {
      return isnan (static_cast<double> (x));
    }
  }
}

#endif

// FIXME: we define this by our own because some compilers, such as
// MSVC, do not provide std::abs (int64_t) and std::abs (uint64_t).  In
// the future, it should go away in favor of std::abs.

template <typename T>
inline T
octave_int_abs (T x)
{
  return (x >= 0 ? x : -x);
}

// Query for an integer type of certain sizeof, and signedness.

template <int qsize, bool qsigned>
struct query_integer_type
{
public:

  static const bool registered = false;

  // Void shall result in a compile-time error if we attempt to use it
  // in computations.

  typedef void type;
};

#define OCTAVE_REGISTER_INT_TYPE(TYPE)                                  \
  template <>                                                           \
  class query_integer_type<sizeof (TYPE),                               \
                           std::numeric_limits<TYPE>::is_signed>        \
  {                                                                     \
  public:                                                               \
                                                                        \
    static const bool registered = true;                                \
                                                                        \
    typedef TYPE type;                                                  \
  }

// No two registered integers can share sizeof and signedness.
OCTAVE_REGISTER_INT_TYPE (int8_t);
OCTAVE_REGISTER_INT_TYPE (uint8_t);
OCTAVE_REGISTER_INT_TYPE (int16_t);
OCTAVE_REGISTER_INT_TYPE (uint16_t);
OCTAVE_REGISTER_INT_TYPE (int32_t);
OCTAVE_REGISTER_INT_TYPE (uint32_t);
OCTAVE_REGISTER_INT_TYPE (int64_t);
OCTAVE_REGISTER_INT_TYPE (uint64_t);

#undef OCTAVE_REGISTER_INT_TYPE

// Handles non-homogeneous integer comparisons.  Avoids doing useless
// tests.

class octave_int_cmp_op
{
  // This determines a suitable promotion type for T1 when meeting T2
  // in a binary relation.  If promotion to int or T2 is safe, it is
  // used.  Otherwise, the signedness of T1 is preserved and it is
  // widened if T2 is wider.  Notice that if this is applied to both
  // types, they must end up with equal size.

  template <typename T1, typename T2>
  class prom
  {
    // Promote to int?
    static const bool pint = (sizeof (T1) < sizeof (int)
                              && sizeof (T2) < sizeof (int));

    static const bool t1sig = std::numeric_limits<T1>::is_signed;
    static const bool t2sig = std::numeric_limits<T2>::is_signed;

    static const bool psig
      = (pint || (sizeof (T2) > sizeof (T1) && t2sig) || t1sig);

    static const int psize
      = (pint
         ? sizeof (int)
         : (sizeof (T2) > sizeof (T1) ? sizeof (T2) : sizeof (T1)));
  public:

    typedef typename query_integer_type<psize, psig>::type type;
  };

  // Implements comparisons between two types of equal size but
  // possibly different signedness.

  template <typename xop, int size>
  class uiop
  {
    typedef typename query_integer_type<size, false>::type utype;
    typedef typename query_integer_type<size, true>::type stype;

  public:

    static bool op (utype x, utype y)
    {
      return xop::op (x, y);
    }

    static bool op (stype x, stype y)
    {
      return xop::op (x, y);
    }

    static bool op (stype x, utype y)
    {
      return (x < 0) ? xop::ltval : xop::op (static_cast<utype> (x), y);
    }

    static bool op (utype x, stype y)
    {
      return (y < 0) ? xop::gtval : xop::op (x, static_cast<utype> (y));
    }
  };

public:

  // Rationale: Comparators have a single static method, rel(), that
  // returns the result of the binary relation.  They also have two
  // static boolean fields: ltval, gtval determine the value of x OP y
  // if x < y, x > y, respectively.

#define OCTAVE_REGISTER_INT_CMP_OP(NM, OP)              \
  class NM                                              \
  {                                                     \
  public:                                               \
                                                        \
    static const bool ltval = (0 OP 1);                 \
    static const bool gtval = (1 OP 0);                 \
                                                        \
    template <typename T>                               \
    static bool op (T x, T y) { return x OP y; }        \
  }

  OCTAVE_REGISTER_INT_CMP_OP (lt, <);
  OCTAVE_REGISTER_INT_CMP_OP (le, <=);
  OCTAVE_REGISTER_INT_CMP_OP (gt, >);
  OCTAVE_REGISTER_INT_CMP_OP (ge, >=);
  OCTAVE_REGISTER_INT_CMP_OP (eq, ==);
  OCTAVE_REGISTER_INT_CMP_OP (ne, !=);

#undef OCTAVE_REGISTER_INT_CMP_OP

  // We also provide two special relations: ct, yielding always true,
  // and cf, yielding always false.

#define OCTAVE_REGISTER_INT_CONST_OP(NM, VALUE) \
  class NM                                      \
  {                                             \
  public:                                       \
                                                \
    static const bool ltval = VALUE;            \
    static const bool gtval = VALUE;            \
                                                \
    template <typename T>                       \
      static bool op (T, T) { return VALUE; }   \
  }

  OCTAVE_REGISTER_INT_CONST_OP (ct, true);
  OCTAVE_REGISTER_INT_CONST_OP (cf, false);

#undef OCTAVE_REGISTER_INT_CONST_OP

  // Universal comparison operation.

  template <typename xop, typename T1, typename T2>
  static bool
  op (T1 x, T2 y)
  {
    typedef typename prom<T1, T2>::type PT1;
    typedef typename prom<T2, T1>::type PT2;

    return uiop<xop, sizeof (PT1)>::op (static_cast<PT1> (x),
                                        static_cast<PT2> (y));
  }

public:

  // Mixed comparisons.

  template <typename xop, typename T>
  static bool mop (T x, double y)
  {
    return xop::op (static_cast<double> (x), y);
  }

  template <typename xop, typename T>
  static bool mop (double x, T y)
  {
    return xop::op (x, static_cast<double> (y));
  }

#if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)

#  define OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_CMP_OPS(T)    \
  template <typename xop>                                       \
  static OCTAVE_API bool external_mop (double, T);              \
                                                                \
  template <typename xop>                                       \
  static OCTAVE_API bool external_mop (T, double)

  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_CMP_OPS (int64_t);
  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_CMP_OPS (uint64_t);

#endif

  // Typecasting to doubles won't work properly for 64-bit integers --
  // they lose precision.  If we have long doubles, use them...

#if defined (OCTAVE_INT_USE_LONG_DOUBLE)

#  if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)

#    define OCTAVE_DEFINE_LONG_DOUBLE_INT_CMP_OP(T)     \
  template <typename xop>                               \
  static bool mop (double x, T y)                       \
  {                                                     \
    return external_mop<xop> (x, y);                    \
  }                                                     \
                                                        \
  template <typename xop>                               \
  static bool mop (T x, double y)                       \
  {                                                     \
    return external_mop<xop> (x, y);                    \
  }

#  else

#    define OCTAVE_DEFINE_LONG_DOUBLE_INT_CMP_OP(T)     \
  template <typename xop>                               \
  static bool mop (double x, T y)                       \
  {                                                     \
    return xop::op (static_cast<long double> (x),       \
                    static_cast<long double> (y));      \
  }                                                     \
                                                        \
  template <typename xop>                               \
  static bool mop (T x, double y)                       \
  {                                                     \
    return xop::op (static_cast<long double> (x),       \
                    static_cast<long double> (y));      \
  }

#  endif

#else

  // ... otherwise, use external handlers

  // FIXME: We could declare directly the mop methods as external, but
  // we can't do this because bugs in gcc (<= 4.3) prevent explicit
  // instantiations later in that case.

#  define OCTAVE_DEFINE_LONG_DOUBLE_INT_CMP_OP(T)       \
  template <typename xop>                               \
  static OCTAVE_API bool emulate_mop (double, T);       \
                                                        \
  template <typename xop>                               \
  static bool mop (double x, T y)                       \
  {                                                     \
    return emulate_mop<xop> (x, y);                     \
  }                                                     \
                                                        \
  template <typename xop>                               \
  static OCTAVE_API bool emulate_mop (T, double);       \
                                                        \
  template <typename xop>                               \
  static bool mop (T x, double y)                       \
  {                                                     \
    return emulate_mop<xop> (x, y);                     \
  }

#endif

  OCTAVE_DEFINE_LONG_DOUBLE_INT_CMP_OP (int64_t)
  OCTAVE_DEFINE_LONG_DOUBLE_INT_CMP_OP (uint64_t)

#undef OCTAVE_DEFINE_LONG_DOUBLE_INT_CMP_OP
};

// Base integer class.  No data, just conversion methods and exception
// flags.

template <typename T>
class octave_int_base
{
public:

  static T min_val (void) { return std::numeric_limits<T>::min (); }
  static T max_val (void) { return std::numeric_limits<T>::max (); }

  // Convert integer value.

  template <typename S>
  static T truncate_int (const S& value)
  {
    // An exhaustive test whether the max and/or min check can be
    // omitted.

    static const bool t_is_signed = std::numeric_limits<T>::is_signed;
    static const bool s_is_signed = std::numeric_limits<S>::is_signed;

    static const int t_size = sizeof (T);
    static const int s_size = sizeof (S);

    static const bool omit_chk_min
      = (! s_is_signed || (t_is_signed && t_size >= s_size));

    static const bool omit_chk_max
      = (t_size > s_size
         || (t_size == s_size && (! t_is_signed || s_is_signed)));

    // If the check can be omitted, substitute constant false
    // relation.

    typedef octave_int_cmp_op::cf cf;
    typedef octave_int_cmp_op::lt lt;
    typedef octave_int_cmp_op::gt gt;
    typedef typename if_then_else<omit_chk_min, cf, lt>::result chk_min;
    typedef typename if_then_else<omit_chk_max, cf, gt>::result chk_max;

    // Efficiency of the following depends on inlining and dead code
    // elimination, but that should be a piece of cake for most
    // compilers.

    if (chk_min::op (value, static_cast<S> (min_val ())))
      return min_val ();
    else if (chk_max::op (value, static_cast<S> (max_val ())))
      return max_val ();
    else
      return static_cast<T> (value);
  }

private:

  // Compute a real-valued threshold for a max/min check.

  template <typename S>
  static S compute_threshold (S val, T orig_val)
  {
    // Fool optimizations (maybe redundant).

    val = octave::math::round (val);

    // If val is even, but orig_val is odd, we're one unit off.

    if (orig_val % 2 && val / 2 == octave::math::round (val / 2))
      // FIXME: is this always correct?
      val *= (static_cast<S> (1) - (std::numeric_limits<S>::epsilon () / 2));

    return val;
  }

public:

  // Convert a real number (check NaN and non-int).

  template <typename S>
  static OCTAVE_API T convert_real (const S& value);
};

// Saturated (homogeneous) integer arithmetics.  The signed and
// unsigned implementations are significantly different, so we
// implement another layer and completely specialize.  Arithmetics
// inherits from octave_int_base so that it can use its exceptions and
// truncation functions.

template <typename T, bool is_signed>
class octave_int_arith_base
{ };

// Unsigned arithmetics.  C++ standard requires it to be modular, so
// the overflows can be handled efficiently and reliably.

template <typename T>
class octave_int_arith_base<T, false> : octave_int_base<T>
{
public:

  static T abs (T x) { return x; }

  static T signum (T x) { return x ? static_cast<T> (1) : static_cast<T> (0); }

  // Shifts do not overflow.

  static T rshift (T x, int n) { return x >> n; }

  static T lshift (T x, int n) { return x << n; }

  static T minus (T) { return static_cast<T> (0); }

  // The overflow behavior for unsigned integers is guaranteed by
  // C and C++, so the following should always work.

  static T add (T x, T y)
  {
    T u = x + y;

    if (u < x)
      u = octave_int_base<T>::max_val ();

    return u;
  }

  static T sub (T x, T y)
  {
    T u = x - y;

    if (u > x)
      u = 0;

    return u;
  }

  // Multiplication is done using promotion to wider integer type.  If
  // there is no suitable promotion type, this operation *MUST* be
  // specialized.

  static T mul (T x, T y) { return mul_internal (x, y); }

  static T mul_internal (T x, T y)
  {
    // Promotion type for multiplication (if exists).

    typedef typename query_integer_type<2*sizeof (T), false>::type mptype;

    return octave_int_base<T>::truncate_int (static_cast<mptype> (x)
                                             * static_cast<mptype> (y));
  }

  // Division with rounding to nearest.  Note that / and % are
  // probably computed by a single instruction.

  static T div (T x, T y)
  {
    if (y != 0)
      {
        T z = x / y;
        T w = x % y;

        if (w >= y-w)
          z += 1;

        return z;
      }
    else
      return x ? octave_int_base<T>::max_val () : 0;
  }

  // Remainder.

  static T rem (T x, T y) { return y != 0 ? x % y : 0; }

  // Modulus.  Note the weird y = 0 case for Matlab compatibility.

  static T mod (T x, T y) { return y != 0 ? x % y : x; }
};

#if defined (OCTAVE_INT_USE_LONG_DOUBLE)

// Handle 64-bit multiply using long double.

#  if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)

extern OCTAVE_API uint64_t
octave_external_uint64_uint64_mul (uint64_t, uint64_t);

#  endif

template <>
inline uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t x, uint64_t y)
{
  uint64_t retval;

  long double p = static_cast<long double> (x) * static_cast<long double> (y);

  if (p > static_cast<long double> (octave_int_base<uint64_t>::max_val ()))
    retval = octave_int_base<uint64_t>::max_val ();
  else
    retval = static_cast<uint64_t> (p);

  return retval;
}

template <>
inline uint64_t
octave_int_arith_base<uint64_t, false>::mul (uint64_t x, uint64_t y)
{
#  if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)
  return octave_external_uint64_uint64_mul (x, y);
#  else
  return mul_internal (x, y);
#  endif
}

#else

// Special handler for 64-bit integer multiply.

template <>
OCTAVE_API uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t, uint64_t);

#endif

template <typename T>
class octave_int_arith_base<T, true> : octave_int_base<T>
{
  // The corresponding unsigned type.
  typedef typename query_integer_type<sizeof (T), false>::type UT;

public:

  // Returns 1 for negative number, 0 otherwise.

  static T __signbit (T x) { return (x < 0) ? 1 : 0; }

  static T abs (T x)
  {
    // -INT_MAX is safe because C++ actually allows only three
    // implementations of integers: sign & magnitude, ones complement
    // and twos complement.  The first test will, with modest
    // optimizations, evaluate at compile time, and maybe eliminate
    // the branch completely.

    return ((octave_int_base<T>::min_val () < -octave_int_base<T>::max_val ()
             && x == octave_int_base<T>::min_val ())
            ? octave_int_base<T>::max_val ()
            : ((x < 0) ? -x : x));
  }

  static T signum (T x)
  {
    // With modest optimizations, this will compile without a jump.

    return ((x > 0) ? 1 : 0) - __signbit (x);
  }

  // FIXME: we do not have an authority what signed shifts should
  // exactly do, so we define them the easy way.  Note that Matlab
  // does not define signed shifts.

  static T rshift (T x, int n) { return x >> n; }

  static T lshift (T x, int n) { return x << n; }

  // Minus has problems similar to abs.

  static T minus (T x)
  {
    return ((octave_int_base<T>::min_val () < -octave_int_base<T>::max_val ()
             && x == octave_int_base<T>::min_val ())
            ? octave_int_base<T>::max_val ()
            : -x);
  }

  static T add (T x, T y)
  {
    // Avoid anything that may overflow.

    return (y < 0
            ? (x < octave_int_base<T>::min_val () - y
               ? octave_int_base<T>::min_val ()
               : x + y)
            : (x > octave_int_base<T>::max_val () - y
               ? octave_int_base<T>::max_val ()
               : x + y));
  }

  static T sub (T x, T y)
  {
    // Avoid anything that may overflow.

    return (y < 0
            ? (x > octave_int_base<T>::max_val () + y
               ? octave_int_base<T>::max_val ()
               : x - y)
            : (x < octave_int_base<T>::min_val () + y
               ? octave_int_base<T>::min_val ()
               : x - y));
  }

  // Multiplication is done using promotion to wider integer type.  If
  // there is no suitable promotion type, this operation *MUST* be
  // specialized.

  static T mul (T x, T y) { return mul_internal (x, y); }

  static T mul_internal (T x, T y)
  {
    // Promotion type for multiplication (if exists).

    typedef typename query_integer_type<2*sizeof (T), true>::type mptype;

    return octave_int_base<T>::truncate_int (static_cast<mptype> (x)
           * static_cast<mptype> (y));
  }

  // Division.

  static T div (T x, T y)
  {
    T z;

    if (y == 0)
      {
        if (x < 0)
          z = octave_int_base<T>::min_val ();
        else if (x != 0)
          z = octave_int_base<T>::max_val ();
        else
          z = 0;
      }
    else if (y < 0)
      {
        // This is a special case that overflows as well.
        if (y == -1 && x == octave_int_base<T>::min_val ())
          z = octave_int_base<T>::max_val ();
        else
          {
            z = x / y;
            // Can't overflow, but std::abs (x) can!
            T w = -octave_int_abs (x % y);
            if (w <= y - w)
              z -= 1 - (__signbit (x) << 1);
          }
      }
    else
      {
        z = x / y;

        // FIXME: this is a workaround due to MSVC's absence of
        // std::abs (int64_t).  The call to octave_int_abs can't
        // overflow, but std::abs (x) can!
        T w = octave_int_abs (x % y);

        if (w >= y - w)
          z += 1 - (__signbit (x) << 1);
      }
    return z;
  }

  // Remainder.

  static T rem (T x, T y)
  {
    return y != 0 ? x % y : 0;
  }

  // Modulus.  Note the weird y = 0 case for Matlab compatibility.

  static T mod (T x, T y)
  {
    if (y != 0)
      {
        T r = x % y;
        return (r == 0) ? 0 : (((r < 0) != (y < 0)) ? r + y : r);
      }
    else
      return x;
  }
};

#if defined (OCTAVE_INT_USE_LONG_DOUBLE)

// Handle 64-bit multiply using long double

#  if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)

extern OCTAVE_API int64_t
octave_external_int64_int64_mul (int64_t, int64_t);

#  endif

template <>
inline int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t x, int64_t y)
{
  int64_t retval;

  long double p = static_cast<long double> (x) * static_cast<long double> (y);

  if (p > static_cast<long double> (octave_int_base<int64_t>::max_val ()))
    retval = octave_int_base<int64_t>::max_val ();
  else if (p < static_cast<long double> (octave_int_base<int64_t>::min_val ()))
    retval = octave_int_base<int64_t>::min_val ();
  else
    retval = static_cast<int64_t> (p);

  return retval;
}

template <>
inline int64_t
octave_int_arith_base<int64_t, true>::mul (int64_t x, int64_t y)
{
#  if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)
  return octave_external_int64_int64_mul (x, y);
#  else
  return mul_internal (x, y);
#  endif
}

#else

// Special handler for 64-bit integer multiply.

template <>
OCTAVE_API int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t, int64_t);

#endif

// This class simply selects the proper arithmetics.
template <typename T>
class octave_int_arith
  : public octave_int_arith_base<T, std::numeric_limits<T>::is_signed>
{ };

template <typename T>
class octave_int : public octave_int_base<T>
{
public:

  typedef T val_type;

  octave_int (void) : m_ival () { }

  octave_int (T i) : m_ival (i) { }

#if defined (OCTAVE_HAVE_OVERLOAD_CHAR_INT8_TYPES)

  // Always treat characters as unsigned.
  octave_int (char c)
    : m_ival (octave_int_base<T>::truncate_int (static_cast<unsigned char> (c)))
  { }

#endif

  octave_int (double d)
    : m_ival (octave_int_base<T>::convert_real (d)) { }

  octave_int (float d)
    : m_ival (octave_int_base<T>::convert_real (d)) { }

#if defined (OCTAVE_INT_USE_LONG_DOUBLE)

  octave_int (long double d)
    : m_ival (octave_int_base<T>::convert_real (d)) { }

#endif

  octave_int (bool b) : m_ival (b) { }

  template <typename U>
  octave_int (const U& i)
    : m_ival(octave_int_base<T>::truncate_int (i)) { }

  template <typename U>
  octave_int (const octave_int<U>& i)
    : m_ival (octave_int_base<T>::truncate_int (i.value ())) { }

  octave_int (const octave_int<T>&) = default;

  octave_int& operator = (const octave_int<T>&) = default;

  ~octave_int (void) = default;

  T value (void) const { return m_ival; }

  const unsigned char * iptr (void) const
  {
    return reinterpret_cast<const unsigned char *> (& m_ival);
  }

  bool operator ! (void) const { return ! m_ival; }

  bool bool_value (void) const { return static_cast<bool> (value ()); }

  char char_value (void) const { return static_cast<char> (value ()); }

  double double_value (void) const { return static_cast<double> (value ()); }

  float float_value (void) const { return static_cast<float> (value ()); }

  operator T (void) const { return value (); }

  octave_int<T> operator + () const { return *this; }

  // unary operators & mappers
#define OCTAVE_INT_UN_OP(OPNAME, NAME)          \
  inline octave_int<T>                          \
  OPNAME () const                               \
  {                                             \
    return octave_int_arith<T>::NAME (m_ival);  \
  }

  OCTAVE_INT_UN_OP (operator -, minus)
  OCTAVE_INT_UN_OP (abs, abs)
  OCTAVE_INT_UN_OP (signum, signum)

#undef OCTAVE_INT_UN_OP

  // Homogeneous binary integer operations.
#define OCTAVE_INT_BIN_OP(OP, NAME, ARGT)               \
  inline octave_int<T>                                  \
  operator OP (const ARGT& y) const                     \
  {                                                     \
    return octave_int_arith<T>::NAME (m_ival, y);       \
  }                                                     \
                                                        \
  inline octave_int<T>&                                 \
  operator OP##= (const ARGT& y)                        \
  {                                                     \
    m_ival = octave_int_arith<T>::NAME (m_ival, y);     \
    return *this;                                       \
  }

  OCTAVE_INT_BIN_OP (+, add, octave_int<T>)
  OCTAVE_INT_BIN_OP (-, sub, octave_int<T>)
  OCTAVE_INT_BIN_OP (*, mul, octave_int<T>)
  OCTAVE_INT_BIN_OP (/, div, octave_int<T>)
  OCTAVE_INT_BIN_OP (%, rem, octave_int<T>)
  OCTAVE_INT_BIN_OP (<<, lshift, int)
  OCTAVE_INT_BIN_OP (>>, rshift, int)

#undef OCTAVE_INT_BIN_OP

  static octave_int<T> min (void) { return std::numeric_limits<T>::min (); }
  static octave_int<T> max (void) { return std::numeric_limits<T>::max (); }

  static int nbits (void) { return std::numeric_limits<T>::digits; }

  static int byte_size (void) { return sizeof (T); }

  static const OCTAVE_API char * type_name ();

  // The following are provided for convenience.
  static const octave_int s_zero, s_one;

private:

  T m_ival;
};

template <typename T>
inline octave_int<T>
rem (const octave_int<T>& x, const octave_int<T>& y)
{
  return octave_int_arith<T>::rem (x.value (), y.value ());
}

template <typename T>
inline octave_int<T>
mod (const octave_int<T>& x, const octave_int<T>& y)
{
  return octave_int_arith<T>::mod (x.value (), y.value ());
}

// No mixed integer binary operations!

namespace octave
{
  namespace math
  {
    template <typename T>
    bool
    isnan (const octave_int<T>&)
    {
      return false;
    }
  }
}

// FIXME: can/should any of these be inline?

template <typename T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>&, const octave_int<T>&);

template <typename T>
extern OCTAVE_API octave_int<T>
pow (const double& a, const octave_int<T>& b);

template <typename T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>& a, const double& b);

template <typename T>
extern OCTAVE_API octave_int<T>
pow (const float& a, const octave_int<T>& b);

template <typename T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>& a, const float& b);

// FIXME: Do we really need a differently named single-precision
//        function integer power function here instead of an overloaded
//        one?

template <typename T>
extern OCTAVE_API octave_int<T>
powf (const float& a, const octave_int<T>& b);

template <typename T>
extern OCTAVE_API octave_int<T>
powf (const octave_int<T>& a, const float& b);

// Binary relations

#define OCTAVE_INT_CMP_OP(OP, NAME)                                     \
  template <typename T1, typename T2>                                   \
  inline bool                                                           \
  operator OP (const octave_int<T1>& x, const octave_int<T2>& y)        \
  {                                                                     \
    return octave_int_cmp_op::op<octave_int_cmp_op::NAME, T1, T2> (x.value (), y.value ()); \
  }

OCTAVE_INT_CMP_OP (<, lt)
OCTAVE_INT_CMP_OP (<=, le)
OCTAVE_INT_CMP_OP (>, gt)
OCTAVE_INT_CMP_OP (>=, ge)
OCTAVE_INT_CMP_OP (==, eq)
OCTAVE_INT_CMP_OP (!=, ne)

#undef OCTAVE_INT_CMP_OP

template <typename T>
inline std::ostream&
operator << (std::ostream& os, const octave_int<T>& ival)
{
  os << ival.value ();
  return os;
}

template <typename T>
inline std::istream&
operator >> (std::istream& is, octave_int<T>& ival)
{
  T tmp = 0;
  is >> tmp;
  ival = tmp;
  return is;
}

// We need to specialise for char and unsigned char because
// std::operator<< and std::operator>> are overloaded to input and
// output the ASCII character values instead of a representation of
// their numerical value (e.g., os << char(10) outputs a space instead
// of outputting the characters '1' and '0')

template <>
inline std::ostream&
operator << (std::ostream& os, const octave_int<int8_t>& ival)
{
  os << static_cast<int> (ival.value ());

  return os;
}

template <>
inline std::ostream&
operator << (std::ostream& os, const octave_int<uint8_t>& ival)
{
  os << static_cast<unsigned int> (ival.value ());

  return os;
}

template <>
inline std::istream&
operator >> (std::istream& is, octave_int<int8_t>& ival)
{
  int tmp = 0;
  is >> tmp;
  ival = static_cast<int8_t> (tmp);

  return is;
}

template <>
inline std::istream&
operator >> (std::istream& is, octave_int<uint8_t>& ival)
{
  unsigned int tmp = 0;
  is >> tmp;
  ival = static_cast<uint8_t> (tmp);

  return is;
}

// Bitwise operations

#define OCTAVE_INT_BITCMP_OP(OP)                                \
  template <typename T>                                         \
  octave_int<T>                                                 \
  operator OP (const octave_int<T>& x, const octave_int<T>& y)  \
  {                                                             \
    return x.value () OP y.value ();                            \
  }

OCTAVE_INT_BITCMP_OP (&)
OCTAVE_INT_BITCMP_OP (|)
OCTAVE_INT_BITCMP_OP (^)

#undef OCTAVE_INT_BITCMP_OP

// General bit shift.
template <typename T>
octave_int<T>
bitshift (const octave_int<T>& a, int n,
          const octave_int<T>& mask = std::numeric_limits<T>::max ())
{
  if (n > 0)
    return (a << n) & mask;
  else if (n < 0)
    return (a >> -n) & mask;
  else
    return a & mask;
}

#if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)

#  define OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OP(T, OP)     \
  extern OCTAVE_API T                                           \
  external_double_ ## T ## _ ## OP (double x, T y);             \
                                                                \
  extern OCTAVE_API T                                           \
  external_ ## T ## _double_ ## OP (T x, double y)

#  define OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OPS(T)        \
  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OP (T, add);          \
  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OP (T, sub);          \
  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OP (T, mul);          \
  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OP (T, div)

  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OPS (octave_int64);
  OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OPS (octave_uint64);

#endif

#define OCTAVE_INT_DOUBLE_BIN_OP0(OP)                           \
  template <typename T>                                         \
  inline octave_int<T>                                          \
  operator OP (const octave_int<T>& x, const double& y)         \
  {                                                             \
    return octave_int<T> (static_cast<double> (x) OP y);        \
  }                                                             \
                                                                \
  template <typename T>                                         \
  inline octave_int<T>                                          \
  operator OP (const double& x, const octave_int<T>& y)         \
  {                                                             \
    return octave_int<T> (x OP static_cast<double> (y));        \
  }

#if defined (OCTAVE_INT_USE_LONG_DOUBLE)

// Handle mixed op using long double.

#  if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)

#    define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME)                  \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP)                                 \
                                                                \
  template <>                                                   \
  inline octave_int64                                           \
  operator OP (const double& x, const octave_int64& y)          \
  {                                                             \
    return external_double_octave_int64_ ## NAME (x, y);        \
  }                                                             \
                                                                \
  template <>                                                   \
  inline octave_uint64                                          \
  operator OP (const double& x, const octave_uint64& y)         \
  {                                                             \
    return external_double_octave_uint64_ ## NAME (x, y);       \
  }                                                             \
                                                                \
  template <>                                                   \
  inline octave_int64                                           \
  operator OP (const octave_int64& x, const double& y)          \
  {                                                             \
    return external_octave_int64_double_ ## NAME (x, y);        \
  }                                                             \
                                                                \
  template <>                                                   \
  inline octave_uint64                                          \
  operator OP (const octave_uint64& x, const double& y)         \
  {                                                             \
    return external_octave_uint64_double_ ## NAME (x, y);       \
  }

#  else

#    define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME)                          \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP)                                         \
                                                                        \
  template <>                                                           \
  inline octave_int64                                                   \
  operator OP (const double& x, const octave_int64& y)                  \
  {                                                                     \
    return octave_int64 (x OP static_cast<long double> (y.value ()));   \
  }                                                                     \
                                                                        \
  template <>                                                           \
  inline octave_uint64                                                  \
  operator OP (const double& x, const octave_uint64& y)                 \
  {                                                                     \
    return octave_uint64 (x OP static_cast<long double> (y.value ()));  \
  }                                                                     \
                                                                        \
  template <>                                                           \
  inline octave_int64                                                   \
  operator OP (const octave_int64& x, const double& y)                  \
  {                                                                     \
    return octave_int64 (static_cast<long double> (x.value ()) OP y);   \
  }                                                                     \
                                                                        \
  template <>                                                           \
  inline octave_uint64                                                  \
  operator OP (const octave_uint64& x, const double& y)                 \
  {                                                                     \
    return octave_uint64 (static_cast<long double> (x.value ()) OP y);  \
  }

#  endif

#else

// External handlers.

#  define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME)            \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP)                         \
                                                        \
  template <>                                           \
  OCTAVE_API octave_int64                               \
  operator OP (const double&, const octave_int64&);     \
                                                        \
  template <>                                           \
  OCTAVE_API octave_uint64                              \
  operator OP (const double&, const octave_uint64&);    \
                                                        \
  template <>                                           \
  OCTAVE_API octave_int64                               \
  operator OP (const octave_int64&, const double&);     \
                                                        \
  template <>                                           \
  OCTAVE_API octave_uint64                              \
  operator OP (const octave_uint64&, const double&);

#endif

OCTAVE_INT_DOUBLE_BIN_OP (+, add)
OCTAVE_INT_DOUBLE_BIN_OP (-, sub)
OCTAVE_INT_DOUBLE_BIN_OP (*, mul)
OCTAVE_INT_DOUBLE_BIN_OP (/, div)

#undef OCTAVE_INT_DOUBLE_BIN_OP0
#undef OCTAVE_INT_DOUBLE_BIN_OP
#undef OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OP
#undef OCTAVE_DECLARE_EXTERNAL_LONG_DOUBLE_INT_OPS

#define OCTAVE_INT_DOUBLE_CMP_OP(OP, NAME)                              \
  template <typename T>                                                 \
  inline bool                                                           \
  operator OP (const octave_int<T>& x, const double& y)                 \
  {                                                                     \
    return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x.value (), y); \
  }                                                                     \
                                                                        \
  template <typename T>                                                 \
  inline bool                                                           \
  operator OP (const double& x, const octave_int<T>& y)                 \
  {                                                                     \
    return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x, y.value ()); \
  }

OCTAVE_INT_DOUBLE_CMP_OP (<, lt)
OCTAVE_INT_DOUBLE_CMP_OP (<=, le)
OCTAVE_INT_DOUBLE_CMP_OP (>=, ge)
OCTAVE_INT_DOUBLE_CMP_OP (>, gt)
OCTAVE_INT_DOUBLE_CMP_OP (==, eq)
OCTAVE_INT_DOUBLE_CMP_OP (!=, ne)

#undef OCTAVE_INT_DOUBLE_CMP_OP

// Floats are handled by simply converting to doubles.

#define OCTAVE_INT_FLOAT_BIN_OP(OP)             \
  template <typename T>                         \
  inline octave_int<T>                          \
  operator OP (const octave_int<T>& x, float y) \
  {                                             \
    return x OP static_cast<double> (y);        \
  }                                             \
                                                \
  template <typename T>                         \
  inline octave_int<T>                          \
  operator OP (float x, const octave_int<T>& y) \
  {                                             \
    return static_cast<double> (x) OP y;        \
  }

OCTAVE_INT_FLOAT_BIN_OP (+)
OCTAVE_INT_FLOAT_BIN_OP (-)
OCTAVE_INT_FLOAT_BIN_OP (*)
OCTAVE_INT_FLOAT_BIN_OP (/)

#undef OCTAVE_INT_FLOAT_BIN_OP

#define OCTAVE_INT_FLOAT_CMP_OP(OP) \
  template <typename T>                                 \
  inline bool                                           \
  operator OP (const octave_int<T>& x, const float& y)  \
  {                                                     \
    return x OP static_cast<double> (y);                \
  }                                                     \
                                                        \
  template <typename T>                                 \
  bool                                                  \
  operator OP (const float& x, const octave_int<T>& y)  \
  {                                                     \
    return static_cast<double> (x) OP y;                \
  }

OCTAVE_INT_FLOAT_CMP_OP (<)
OCTAVE_INT_FLOAT_CMP_OP (<=)
OCTAVE_INT_FLOAT_CMP_OP (>=)
OCTAVE_INT_FLOAT_CMP_OP (>)
OCTAVE_INT_FLOAT_CMP_OP (==)
OCTAVE_INT_FLOAT_CMP_OP (!=)

#undef OCTAVE_INT_FLOAT_CMP_OP

template <typename T>
octave_int<T>
xmax (const octave_int<T>& x, const octave_int<T>& y)
{
  const T xv = x.value ();
  const T yv = y.value ();

  return octave_int<T> (xv >= yv ? xv : yv);
}

template <typename T>
octave_int<T>
xmin (const octave_int<T>& x, const octave_int<T>& y)
{
  const T xv = x.value ();
  const T yv = y.value ();

  return octave_int<T> (xv <= yv ? xv : yv);
}

// Ints are handled by converting to octave_int type.

#define OCTAVE_INT_IDX_TYPE_BIN_OP(OP)                          \
  template <typename T>                                         \
  inline octave_int<T>                                          \
  operator OP (const octave_int<T>& x, octave_idx_type y)       \
  {                                                             \
    return x OP octave_int<T> (y);                              \
  }                                                             \
                                                                \
  template <typename T>                                         \
  inline octave_int<T>                                          \
  operator OP (octave_idx_type x, const octave_int<T>& y)       \
  {                                                             \
    return octave_int<T> (x) OP y;                              \
  }

OCTAVE_INT_IDX_TYPE_BIN_OP (+)
OCTAVE_INT_IDX_TYPE_BIN_OP (-)
OCTAVE_INT_IDX_TYPE_BIN_OP (*)
OCTAVE_INT_IDX_TYPE_BIN_OP (/)

#undef OCTAVE_INT_IDX_TYPE_BIN_OP

#endif