view scripts/general/curl.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 0a5b15007766
children e54a36a82537
line wrap: on
line source

########################################################################
##
## Copyright (C) 2009-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{cx}, @var{cy}, @var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{z}, @var{fx}, @var{fy}, @var{fz})
## @deftypefnx {} {[@var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{fx}, @var{fy})
## @deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy}, @var{fz})
## @deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy})
## @deftypefnx {} {@var{v} =} curl (@dots{})
## Calculate curl of vector field given by the arrays @var{fx}, @var{fy}, and
## @var{fz} or @var{fx}, @var{fy} respectively.
## @tex
## $$ curl F(x,y,z) = \left( {\partial{d} \over \partial{y}} F_z - {\partial{d} \over \partial{z}} F_y, {\partial{d} \over \partial{z}} F_x - {\partial{d} \over \partial{x}} F_z, {\partial{d} \over \partial{x}} F_y - {\partial{d} \over \partial{y}} F_x \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##                   / d         d       d         d       d         d     \
## curl F(x,y,z)  =  | -- Fz  -  -- Fy,  -- Fx  -  -- Fz,  -- Fy  -  -- Fx |
##                   \ dy        dz      dz        dx      dx        dy    /
## @end group
## @end example
##
## @end ifnottex
## The coordinates of the vector field can be given by the arguments @var{x},
## @var{y}, @var{z} or @var{x}, @var{y} respectively.  @var{v} calculates the
## scalar component of the angular velocity vector in direction of the z-axis
## for two-dimensional input.  For three-dimensional input the scalar
## rotation is calculated at each grid point in direction of the vector field
## at that point.
## @seealso{divergence, gradient, del2, cross}
## @end deftypefn

function varargout = curl (varargin)

  fidx = 1;
  if (nargin == 2)
    sz = size (varargin{fidx});
    dx = (1:sz(2))(:);
    dy = (1:sz(1))(:);
  elseif (nargin == 3)
    sz = size (varargin{fidx});
    dx = (1:sz(2))(:);
    dy = (1:sz(1))(:);
    dz = (1:sz(3))(:);
  elseif (nargin == 4)
    fidx = 3;
    dx = varargin{1}(1,:);
    dy = varargin{2}(:,1);
  elseif (nargin == 6)
    fidx = 4;
    dx = varargin{1}(1,:,1)(:);
    dy = varargin{2}(:,1,1)(:);
    dz = varargin{3}(1,1,:)(:);
  else
    print_usage ();
  endif

  if (nargin == 4 || nargin == 2)
    if (! size_equal (varargin{fidx}, varargin{fidx + 1}))
      error ("curl: size of X and Y must match");
    elseif (ndims (varargin{fidx}) != 2)
      error ("curl: X and Y must be 2-D matrices");
    elseif ((length (dx) != columns (varargin{fidx}))
         || (length (dy) != rows (varargin{fidx})))
      error ("curl: size of dx and dy must match the respective dimension of X and Y");
    endif

    dFx_dy = gradient (varargin{fidx}.', dy, dx).';
    dFy_dx = gradient (varargin{fidx + 1}, dx, dy);
    rot_z = dFy_dx - dFx_dy;
    av = rot_z / 2;
    if (nargout == 0 || nargout == 1)
      varargout{1} = av;
    else
      varargout{1} = rot_z;
      varargout{2} = av;
    endif

  elseif (nargin == 6 || nargin == 3)
    if (! size_equal (varargin{fidx}, varargin{fidx + 1}, varargin{fidx + 2}))
      error ("curl: size of X, Y, and Z must match");
    elseif (ndims (varargin{fidx}) != 3)
      error ("curl: X, Y, and Z must be 2-D matrices");
    elseif ((length (dx) != size (varargin{fidx}, 2))
         || (length (dy) != size (varargin{fidx}, 1))
         || (length (dz) != size (varargin{fidx}, 3)))
      error ("curl: size of dx, dy, and dz must match the respective dimesion of X, Y, and Z");
    endif

    [~, dFx_dy, dFx_dz] = gradient (varargin{fidx}, dx, dy, dz);
    [dFy_dx, ~, dFy_dz] = gradient (varargin{fidx + 1}, dx, dy, dz);
    [dFz_dx, dFz_dy] = gradient (varargin{fidx + 2}, dx, dy, dz);
    rot_x = dFz_dy - dFy_dz;
    rot_y = dFx_dz - dFz_dx;
    rot_z = dFy_dx - dFx_dy;
    l = sqrt(varargin{fidx}.^2 + varargin{fidx + 1}.^2 + varargin{fidx + 2}.^2);
    av = (rot_x .* varargin{fidx} +
          rot_y .* varargin{fidx + 1} +
          rot_z .* varargin{fidx + 2}) ./ (2 * l);

    if (nargout == 0 || nargout == 1)
      varargout{1} = av;
    else
      varargout{1} = rot_x;
      varargout{2} = rot_y;
      varargout{3} = rot_z;
      varargout{4} = av;
    endif
  endif

endfunction


%!test
%! [X,Y] = meshgrid (-20:20,-22:22);
%! av = curl (2*(X-Y), Y);
%! assert (all (av(:) == 1));
%! [cz,av] = curl (2*(X-Y), Y);
%! assert (all (cz(:) == 2));
%! assert (all (av(:) == 1));
%! [cz,av] = curl (X/2, Y/2, 2*(X-Y), Y);
%! assert (all (cz(:) == 4));
%! assert (all (av(:) == 2));
%! assert (size_equal (X,Y,cz,av));