view scripts/general/del2.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children a40c0b7aa376
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{L} =} del2 (@var{M})
## @deftypefnx {} {@var{L} =} del2 (@var{M}, @var{h})
## @deftypefnx {} {@var{L} =} del2 (@var{M}, @var{dx}, @var{dy}, @dots{})
##
## Calculate the discrete Laplace
## @tex
## operator $( \nabla^2 )$.
## @end tex
## @ifnottex
## operator.
## @end ifnottex
##
## For a 2-dimensional matrix @var{M} this is defined as
## @tex
## $$L = {1 \over 4} \left( {d^2 \over dx^2} M(x,y) + {d^2 \over dy^2} M(x,y) \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##       1    / d^2            d^2         \
## L  = --- * | ---  M(x,y) +  ---  M(x,y) |
##       4    \ dx^2           dy^2        /
## @end group
## @end example
##
## @end ifnottex
## For N-dimensional arrays the sum in parentheses is expanded to include
## second derivatives over the additional higher dimensions.
##
## The spacing between evaluation points may be defined by @var{h}, which is a
## scalar defining the equidistant spacing in all dimensions.  Alternatively,
## the spacing in each dimension may be defined separately by @var{dx},
## @var{dy}, etc.  A scalar spacing argument defines equidistant spacing,
## whereas a vector argument can be used to specify variable spacing.  The
## length of the spacing vectors must match the respective dimension of
## @var{M}.  The default spacing value is 1.
##
## Dimensions with fewer than 3 data points are skipped.  Boundary points are
## calculated from the linear extrapolation of interior points.
##
## Example: Second derivative of 2*x^3
##
## @example
## @group
## f = @@(x) 2*x.^3;
## dd = @@(x) 12*x;
## x = 1:6;
## L = 4*del2 (f(x));
## assert (L, dd (x));
## @end group
## @end example
##
## @seealso{gradient, diff}
## @end deftypefn

function L = del2 (M, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  nd = ndims (M);
  sz = size (M);
  dx = cell (1, nd);
  if (nargin == 1)
    for i = 1 : nd
      dx(i) = ones (sz(i), 1);
    endfor
  elseif (nargin == 2 && isscalar (varargin{1}))
    h = varargin{1};
    for i = 1 : nd
      dx(i) = h * ones (sz(i), 1);
    endfor
  elseif (numel (varargin) <= nd)
    ndx = numel (varargin);
    varargin(ndx+1:nd) = 1;   # Fill missing dims with 1.
    ## Reverse dx{1} and dx{2} as the X-dim is the 2nd dim of a meshgrid array
    varargin([1, 2]) = varargin([2, 1]);
    for i = 1 : nd
      arg = varargin{i};
      if (isscalar (arg))
        dx(i) = arg * ones (sz(i), 1);
      elseif (isvector (arg))
        if (length (arg) != sz(i))
          error ("del2: number of elements in spacing vector %d does not match dimension %d of M", i, i);
        endif
        dx(i) = diff (varargin{i})(:);
      else
        error ("del2: spacing element %d must be a scalar or vector", i);
      endif
    endfor
  else
    print_usage ();
  endif

  idx = cell (1, nd);
  idx(:) = ":";

  L = zeros (sz);
  for i = 1 : nd
    if (sz(i) >= 3)
      DD = zeros (sz);
      idx1 = idx2 = idx3 = idx;

      ## interior points
      idx1{i} = 1 : sz(i) - 2;
      idx2{i} = 2 : sz(i) - 1;
      idx3{i} = 3 : sz(i);
      szi = sz;
      szi(i) = 1;

      h1 = repmat (shiftdim (dx{i}(1 : sz(i) - 2), 1 - i), szi);
      h2 = repmat (shiftdim (dx{i}(2 : sz(i) - 1), 1 - i), szi);
      DD(idx2{:}) = ((M(idx1{:}) - M(idx2{:})) ./ h1 + ...
                     (M(idx3{:}) - M(idx2{:})) ./ h2) ./ (h1 + h2);

      ## left and right boundary
      if (sz(i) == 3)
        DD(idx1{:}) = DD(idx3{:}) = DD(idx2{:});
      else
        idx1{i} = 1;
        idx2{i} = 2;
        idx3{i} = 3;
        DD(idx1{:}) = (dx{i}(1) + dx{i}(2)) / dx{i}(2) * DD(idx2{:}) - ...
            dx{i}(1) / dx{i}(2) * DD(idx3{:});

        idx1{i} = sz(i);
        idx2{i} = sz(i) - 1;
        idx3{i} = sz(i) - 2;
        DD(idx1{:}) = (dx{i}(sz(i) - 1) + dx{i}(sz(i) - 2)) / ...
            dx{i}(sz(i) - 2) * DD(idx2{:}) - ...
            dx{i}(sz(i) - 1) / dx{i}(sz(i) - 2) * DD(idx3{:});
      endif

      L += DD;
    endif
  endfor

  L ./= nd;

endfunction


## 3x3 constant test
%!test
%! a = ones (3,3);
%! b = del2 (a);
%! assert (b(:,1), [0.00;0.00;0.00]);
%! assert (b(:,2), [0.00;0.00;0.00]);
%! assert (b(:,3), [0.00;0.00;0.00]);

## 3x3 planar test
%!test
%! a = [1,2,3;2,3,4;3,4,5];
%! b = del2 (a);
%! assert (b(:,1), [0.00;0.00;0.00]);
%! assert (b(:,2), [0.00;0.00;0.00]);
%! assert (b(:,3), [0.00;0.00;0.00]);

## 3x3 corner test
%!test
%! a = zeros (3,3);
%! a(1,1) = 1.0;
%! b = 2*del2 (a);
%! assert (b(:,1), [1.00;0.50;0.50]);
%! assert (b(:,2), [0.50;0.00;0.00]);
%! assert (b(:,3), [0.50;0.00;0.00]);
%! assert (b, flipud (2*del2 (flipud (a))));
%! assert (b, fliplr (2*del2 (fliplr (a))));
%! assert (b, flipud (fliplr (2*del2 (fliplr (flipud (a))))));

## 3x3 boundary test
%!test
%! a = zeros (3,3);
%! a(2,1)=1.0;
%! b = 2*del2 (a);
%! assert (b(:,1), [-1.00;-0.50;-1.00]);
%! assert (b(:,2), [0.00;0.50;0.00]);
%! assert (b(:,3), [0.00;0.50;0.00]);
%! assert (b, flipud (2*del2 (flipud (a))));
%! assert (b, fliplr (2*del2 (fliplr (a))));
%! assert (b, flipud (fliplr (2*del2 (fliplr (flipud (a))))));

## 3x3 center test
%!test
%! a = zeros (3,3);
%! a(2,2) = 1.0;
%! b = del2 (a);
%! assert (b(:,1), [0.00;-0.50;0.00]);
%! assert (b(:,2), [-0.50;-1.00;-0.50]);
%! assert (b(:,3), [0.00;-0.50;0.00]);

## 4x4 constant test
%!test
%! a = ones (4,4);
%! b = del2 (a);
%! assert (b(:,1), [0.00;0.00;0.00;0.00]);
%! assert (b(:,2), [0.00;0.00;0.00;0.00]);
%! assert (b(:,3), [0.00;0.00;0.00;0.00]);
%! assert (b(:,4), [0.00;0.00;0.00;0.00]);

## 4x4 planar test
%!test
%! a = [1,2,3,4;2,3,4,5;3,4,5,6;4,5,6,7];
%! b = del2 (a);
%! assert (b(:,1), [0.00;0.00;0.00;0.00]);
%! assert (b(:,2), [0.00;0.00;0.00;0.00]);
%! assert (b(:,3), [0.00;0.00;0.00;0.00]);
%! assert (b(:,4), [0.00;0.00;0.00;0.00]);

## 4x4 corner test
%!test
%! a = zeros (4,4);
%! a(1,1) = 1.0;
%! b = 2*del2 (a);
%! assert (b(:,1), [2.00;0.50;0.00;-0.50]);
%! assert (b(:,2), [0.50;0.00;0.00;0.00]);
%! assert (b(:,3), [0.00;0.00;0.00;0.00]);
%! assert (b(:,4), [-0.50;0.00;0.00;0.00]);
%! assert (b, flipud (2*del2 (flipud (a))));
%! assert (b, fliplr (2*del2 (fliplr (a))));
%! assert (b, flipud (fliplr (2*del2 (fliplr (flipud (a))))));

## 9x9 center test
%!test
%! a = zeros (9,9);
%! a(5,5) = 1.0;
%! b = 2*del2 (a);
%! assert (b(:,1), [0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00]);
%! assert (b(:,2), [0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00]);
%! assert (b(:,3), [0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00]);
%! assert (b(:,4), [0.00;0.00;0.00;0.00;0.50;0.00;0.00;0.00;0.00]);
%! assert (b(:,5), [0.00;0.00;0.00;0.50;-2.00;0.50;0.00;0.00;0.00]);
%! assert (b(:,6), b(:,4));
%! assert (b(:,7), b(:,3));
%! assert (b(:,8), b(:,2));
%! assert (b(:,9), b(:,1));

## 9x9 boundary test
%!test
%! a = zeros (9,9);
%! a(1,5) = 1.0;
%! b = 2*del2 (a);
%! assert (b(1,:), [0.00,0.00,0.00,0.50,0.00,0.50,0.00,0.00,0.00]);
%! assert (b(2,:), [0.00,0.00,0.00,0.00,0.50,0.00,0.00,0.00,0.00]);
%! assert (b(3:9,:), zeros (7,9));
%! a(1,5) = 0.0;
%! a(5,1) = 1.0;
%! b = 2*del2 (a);
%! assert (b(:,1), [0.00;0.00;0.00;0.50;0.00;0.50;0.00;0.00;0.00]);
%! assert (b(:,2), [0.00;0.00;0.00;0.00;0.50;0.00;0.00;0.00;0.00]);
%! assert (b(:,3:9), zeros (9,7));

## 9x9 dh center test
%!test
%! a = zeros (9,9);
%! a(5,5) = 1.0;
%! b = 8*del2 (a,2);
%! assert (b(:,1:3), zeros (9,3));
%! assert (b(:,4), [0.00;0.00;0.00;0.00;0.50;0.00;0.00;0.00;0.00]);
%! assert (b(:,5), [0.00;0.00;0.00;0.50;-2.00;0.50;0.00;0.00;0.00]);
%! assert (b(:,6), b(:,4));
%! assert (b(:,7:9), zeros (9,3));

## 9x9 dx test
%!test
%! a = zeros (9,9);
%! a(5,5) = 1.0;
%! b = 4*del2 (a,2,1);
%! assert (b(1:3,:), zeros (3,9));
%! assert (b(4,:), [0.00;0.00;0.00;0.00;1.00;0.00;0.00;0.00;0.00]');
%! assert (b(5,:), [0.00;0.00;0.00;0.25;-2.5;0.25;0.00;0.00;0.00]');
%! assert (b(6,:), b(4,:));
%! assert (b(7:9,:), zeros (3,9));

## 9x9 dy test
%!test
%! a = zeros (9,9);
%! a(5,5) = 1.0;
%! b = 4*del2 (a,1,2);
%! assert (b(:,1:3), zeros (9,3));
%! assert (b(:,4), [0.00;0.00;0.00;0.00;1.00;0.00;0.00;0.00;0.00]);
%! assert (b(:,5), [0.00;0.00;0.00;0.25;-2.5;0.25;0.00;0.00;0.00]);
%! assert (b(:,6), b(:,4));
%! assert (b(:,7:9), zeros (9,3));

## 3D test
%!test
%! a = zeros (9,9,9);
%! a(5,5,5) = 1.0;
%! b = 8*3*del2 (a,2);
%! assert (b(:,:,1:3), zeros (9,9,3));
%! assert (b(:,1:3,:), zeros (9,3,9));
%! assert (b(1:3,:,:), zeros (3,9,9));
%! assert (b(4:5,4,4), [0.0,0.0]');
%! assert (b(5,5,4), 1.00);
%! assert (b(4,4,5), 0.00);
%! assert (b(5,4,5), 1.00);
%! assert (b(5,5,5),-6.00);
%! assert (b, flip (b,1));
%! assert (b, flip (b,2));
%! assert (b, flip (b,3));

%!test <*51728>
%! x = linspace (-2*pi, 2*pi);
%! U = cos (x);
%! L = 4*del2 (U, x);

## Test input validation
%!error <Invalid call> del2 ()
%!error <Invalid call> del2 (1, 1, 2, 3)
%!error <in spacing vector 1> del2 (1, 2, [1 1])
%!error <in spacing vector 2> del2 (1, [1 1], 2)
%!error <must be a scalar or vector> del2 (1, ones (2,2), 2)