view scripts/ode/private/runge_kutta_interpolate.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2015-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

function u_interp = runge_kutta_interpolate (order, z, u, t, k_vals, dt, func, args)

  switch (order)

    case 1
      u_interp = interp1 (z, u.', t, "linear");

    case 2
      if (! isempty (k_vals))
        der = k_vals(:,1);
      else
        der = feval (func, z(1) , u(:,1), args);
      endif
      u_interp = quadratic_interpolation (z, u, der, t);

    case 3
      u_interp = hermite_cubic_interpolation (z, u, k_vals, t);

    case 5
      ## ode45 with Dormand-Prince scheme:
      u_interp = hermite_quartic_interpolation (z, u, k_vals, t);

    otherwise
      warning (["High order interpolation not yet implemented: ", ...
                "using cubic interpolation instead"]);
      der(:,1) = feval (func, z(1), u(:,1), args);
      der(:,2) = feval (func, z(2), u(:,2), args);
      u_interp = hermite_cubic_interpolation (z, u, der, t);

  endswitch

endfunction

## The function below can be used in an ODE solver to interpolate the solution
## at the time t_out using 2nd order Hermite interpolation.
function x_out = quadratic_interpolation (t, x, der, t_out)

  ## coefficients of the parabola
  a = -(x(:,1) - x(:,2) - der(:).*(t(1)-t(2))) / (t(1) - t(2))^2;
  b = der(:) - 2*t(1).*a;
  c = x(:,1) - a*t(1)^2 - b*t(1);

  ## evaluate in t_out
  x_out = a*t_out.^2 + b*t_out + c;

endfunction

## The function below can be used in an ODE solver to interpolate the
## solution at the time t_out using 3rd order Hermite interpolation.
function x_out = hermite_cubic_interpolation (t, x, der, t_out)

  dt = (t(2) - t(1));
  s = (t_out - t(1)) / dt;
  x_out = ((1 + 2*s) .* (1-s).^2) .* x(:,1) + ...
          (s .* (1-s).^2 * dt   ) .* der(:,1) + ...
          ((3-2*s) .* s.^2      ) .* x(:,end) + ...
          ((s-1) .* s.^2   * dt ) .* der(:,end);

endfunction

## The function below can be used in an ODE solver to interpolate the
## solution at the time t_out using 4th order Hermite interpolation.
function x_out = hermite_quartic_interpolation (t, x, der, t_out)

  persistent coefs_u_half = ...
    [6025192743/30085553152; 0; 51252292925/65400821598;
     -2691868925/45128329728; 187940372067/1594534317056;
     -1776094331/19743644256; 11237099/235043384];

  ## 4th order approximation of y in t+dt/2 as proposed by Shampine in
  ## Lawrence, Shampine, "Some Practical Runge-Kutta Formulas", 1986.
  dt = t(2) - t(1);
  u_half = x(:,1) + (1/2) * dt * (der(:,1:7) * coefs_u_half);

  ## Rescale time on [0,1]
  s = (t_out - t(1)) / dt;

  ## Hermite basis functions
  ## H0 = 1   - 11*s.^2 + 18*s.^3 -  8*s.^4;
  ## H1 =   s -  4*s.^2 +  5*s.^3 -  2*s.^4;
  ## H2 =       16*s.^2 - 32*s.^3 + 16*s.^4;
  ## H3 =     -  5*s.^2 + 14*s.^3 -  8*s.^4;
  ## H4 =          s.^2 -  3*s.^3 +  2*s.^4;

  x_out = (1   - 11*s.^2 + 18*s.^3 -  8*s.^4) .* x(:,1) + ...
          (  s -  4*s.^2 +  5*s.^3 -  2*s.^4) .* (dt * der(:,1)) + ...
          (      16*s.^2 - 32*s.^3 + 16*s.^4) .* u_half + ...
          (    -  5*s.^2 + 14*s.^3 -  8*s.^4) .* x(:,2) + ...
          (         s.^2 -  3*s.^3 +  2*s.^4) .* (dt * der(:,end));

endfunction