view scripts/plot/draw/private/__ezplot__.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 363fb10055df
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2007-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {[@var{h}, @var{needusage}] =} __ezplot__ (@var{pltfunc}, @var{varargin})
## Undocumented internal function.
## @end deftypefn

## Overview: This function is the back-end for the 9 ez* plot functions.
##           As such, most of the function is actually dedicated to sorting
##           out the inputs and verifying that the particular ez* function
##           called was called correctly.  The actual plotting occurs near
##           the end in an unwind_protect block.

function [h, needusage] = __ezplot__ (pltfunc, varargin)

  ezfunc = ["ez" pltfunc];

  [hax, varargin, nargin] = __plt_get_axis_arg__ (ezfunc, varargin{:});

  ## Define outputs early in case of shorting out of function with return;
  h = [];
  needusage = false;
  if (nargin < 1)
    needusage = true;
    return;
  endif

  iscontour = strncmp (pltfunc, "contour", 7);

  ## Defaults for ezplot
  isplot  = true;
  isplot3 = false;
  ispolar = false;
  nargs = 1;
  switch (pltfunc)
    case "plot"
      ## defaults already set

    case "plot3"
      isplot  = false;
      isplot3 = true;

    case "polar"
      isplot  = false;
      ispolar = true;

    otherwise
      ## contour, mesh, surf plots
      isplot  = false;
      nargs = 2;

  endswitch

  parametric = false;
  fun = varargin{1};
  if (ischar (fun))
    if (exist (fun, "file") || exist (fun, "builtin"))
      fun = str2func (fun);            # convert to function handle
    else
      fun = vectorize (inline (fun));  # convert to inline function
    endif
  endif

  if (isa (fun, "inline"))
    argids = argnames (fun);
    if (isplot && length (argids) == 2)
      nargs = 2;
    elseif (numel (argids) != nargs)
      error ("%s: expecting a function of %d arguments", ezfunc, nargs);
    endif
    fun = vectorize (fun);
    fstr = formula (fun);
    if (isplot)
      xarg = argids{1};
      if (nargs == 2)
        yarg = argids{2};
      else
        yarg = "";
      endif
    elseif (isplot3)
      xarg = "x";
      yarg = "y";
    elseif (isplot || ispolar)
      xarg = "";
      yarg = "";
    else
      xarg = argids{1};
      yarg = argids{2};
    endif
  elseif (is_function_handle (fun))
    fstr = func2str (fun);
    idx = index (fstr, ')');
    if (idx != 0)
      args = regexp (fstr(3:(idx-1)), '\w+', 'match');
      fstr = fstr(idx+2:end);  # remove '@(x) ' from string name
    else
      args = {"x"};
      try
        if (builtin ("nargin", fun) == 2)
          args{2} = "y";
        endif
      end_try_catch
    endif
    if (isplot && length (args) == 2)
      nargs = 2;
    elseif (numel (args) != nargs)
      error ("%s: expecting a function of %d arguments", ezfunc, nargs);
    endif
    if (isplot)
      xarg = args{1};
      if (nargs == 2)
        yarg = args{2};
      else
        yarg = "";
      endif
    elseif (isplot3)
      xarg = "x";
      yarg = "y";
    elseif (ispolar)
      xarg = "";
      yarg = "";
    else
      xarg = args{1};
      yarg = args{2};
    endif
  else
    error ("%s: F must be a string or function handle", ezfunc);
  endif

  if (nargin > 2 || (nargin == 2 && isplot))
    funx = fun;
    fstrx = fstr;
    funy = varargin{2};
    if (ischar (funy) && ! strcmp (funy, "circ") && ! strcmp (funy, "animate"))
      parametric = true;
      if (exist (funy, "file") || exist (funy, "builtin"))
        funy = inline ([funy "(t)"]);
      else
        funy = vectorize (inline (funy));
      endif
      if (numel (argnames (funy)) != nargs)
        error ("%s: expecting a function of %d arguments", ezfunc, nargs);
      endif
      fstry = formula (funy);
    elseif (isa (funy, "inline"))
      parametric = true;
      if (numel (argnames (funy)) != nargs)
        error ("%s: expecting a function of %d arguments", ezfunc, nargs);
      endif
      funy = vectorize (funy);
      fstry = formula (funy);
    elseif (is_function_handle (funy))
      parametric = true;
      fstry = func2str (funy);
      idx = index (fstry, ')');
      if (idx != 0)
        args = regexp (fstry(3:(idx-1)), '\w+', 'match');
        fstry = fstry(idx+2:end);  # remove '@(x) ' from string name
      else
        args = {"y"};
      endif
      if (numel (args) != nargs)
        error ("%s: expecting a function of %d arguments", ezfunc, nargs);
      endif
    endif

    if (! parametric && isplot3)
      needusage = true;  # Can't call non-parametric ezplot3
      return;
    elseif (parametric && isplot)
      if (nargs == 2)
        error ("%s: can not define a parametric function in this manner", ezfunc);
      else
        xarg = "x";
        yarg = "y";
      endif
    elseif (parametric)
      funz = varargin{3};
      if (ischar (funz) && ! strcmp (funz, "circ")
          && ! strcmp (funz, "animate"))
        if (exist (funz, "file") || exist (funz, "builtin"))
          funz = inline ([funz "(t)"]);
        else
          funz = vectorize (inline (funz));
        endif
        if (numel (argnames (funz)) > nargs)
          error ("%s: expecting a function of %d arguments", ezfunc, nargs);
        endif
        fstrz = formula (funz);
      elseif (isa (funz, "inline"))
        if (numel (argnames (funz)) != nargs)
          error ("%s: expecting a function of %d arguments", ezfunc, nargs);
        endif
        funz = vectorize (funz);
        fstrz = formula (funz);
      elseif (is_function_handle (funz))
        fstrz = func2str (funz);
        idx = index (fstrz, ')');
        if (idx != 0)
          args = regexp (fstrz(3:(idx-1)), '\w+', 'match');
          fstrz = fstrz(idx+2:end);  # remove '@(x) ' from string name
        else
          args = {"z"};
        endif
        if (numel (args) != nargs)
          error ("%s: expecting a function of %d arguments", ezfunc, nargs);
        endif
      else
        error ("%s: parametric plots require 3 functions", ezfunc);
      endif
    endif
  endif

  if ((isplot && nargs != 2) || isplot3 || ispolar)
    n = 500;   # default for point-style functions like plot
  else
    n = 60;    # default for meshgrid style functions like contour, surf
  endif
  domain = [];
  circ = false;
  animate = false;
  if (parametric)
    if (isplot)
      iarg = 3;
    else
      iarg = 4;
    endif
  else
    iarg = 2;
  endif
  while (iarg <= nargin)
    arg = varargin{iarg++};
    if (ischar (arg) && strcmp (arg, "circ"))
      circ = true;
    elseif (ischar (arg) && strcmp (arg, "animate"))
      animate = true;
    elseif (isscalar (arg) && (n == 60 || n == 500))
      n = arg;
    elseif (numel (arg) == 2 && isempty (domain))
      domain = [arg(1) arg(2) arg(1) arg(2)];
    elseif (numel (arg) == 4 && isempty (domain))
      domain = arg(:).';
    else
      error ("%s: expecting scalar N, or 2-/4-element vector DOM", ezfunc);
    endif
  endwhile

  if (circ && (iscontour || isplot3 || isplot))
    needusage = true;
    return;
  elseif (circ && parametric)
    error ("%s: can not have both circular domain and parametric function",
           ezfunc);
  endif

  if (animate && ! isplot3)
    error ("%s: animate option only valid for ezplot3", ezfunc);
  endif

  if (parametric)
    ## Make the label strings pretty by removing extra spaces between base
    ## and exponent, the '.' in vectorized code, and the '*' for multiply.
    fstrx = regexprep (regexprep (regexprep (fstrx,
           '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' ');
    fstry = regexprep (regexprep (regexprep (fstry,
           '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' ');
    if (isplot)
      fstr = ["x = " fstrx ", y = " fstry];
    else
      fstrz = regexprep (regexprep (regexprep (fstrz,
           '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' ');
      fstr = ["x = " fstrx ", y = " fstry ", z = " fstrz];
    endif
  else
    fstr = regexprep (regexprep (regexprep (fstr,
           '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' ');
    if (isplot && nargs == 2)
      fstr = [fstr " = 0"];  # make title string of implicit function
    elseif (ispolar)
      fstr = ["r = " fstr];
    endif
  endif

  if (isempty (domain))
    auto_domain = true;
    if (isplot3 || ispolar)
      domain = [0, 2*pi, 0, 2*pi];
    else
      domain = [-2*pi, 2*pi, -2*pi, 2*pi];
    endif
  else
    auto_domain = false;
  endif

  auto_domain_done = false;
  do
    domain_ok = true;

    if ((isplot && nargs == 1) || isplot3 || ispolar)
      X = linspace (domain(1), domain(2), n);
    elseif (isplot && numel (domain) == 2)
      x = linspace (domain(1), domain(2), n);
      [X, Y] = meshgrid (x, x);
    elseif (circ)
      ## To plot on circular domain develop grid in polar coordinates
      ## and then switch these to Cartesian coordinates.
      cent = [domain(1) + domain(2), domain(3) + domain(4)] / 2;
      rmax = sqrt ((domain(2) - cent(1))^2 + (domain(4) - cent(2))^2);
      r = linspace (0, rmax, n);
      t = linspace (0, 2*pi, n);
      [T, R] = meshgrid (t, r);
      X = R .* cos (T) + cent(1);
      Y = R .* sin (T) + cent(2);
      domain = [-rmax+cent(1), +rmax+cent(1), -rmax+cent(2), +rmax+cent(2)];
    else  # contour, mesh, surf plots
      x = linspace (domain(1), domain(2), n);
      y = linspace (domain(3), domain(4), n);
      [X, Y] = meshgrid (x, y);
    endif

    if (parametric)
      if (isplot)
        XX = feval (funx, X);
        Z = feval (funy, X);
        X = XX;
      elseif (isplot3)
        Z = feval (funz, X);
        XX = feval (funx, X);
        YY = feval (funy, X);
        X = XX;
        Y = YY;
      else
        Z = feval (funz, X, Y);
        XX = feval (funx, X, Y);
        YY = feval (funy, X, Y);
        X = XX;
        Y = YY;

        ## Eliminate the singularities
        X = __eliminate_sing__ (X);
        Y = __eliminate_sing__ (Y);
        Z = __eliminate_sing__ (Z);
      endif
    else  # non-parametric plots
      if (isplot && nargs == 2)
        Z = feval (fun, X, Y);

        ## Matlab returns line objects for this case and so can't call
        ## contour directly as it returns patch objects to allow colormaps
        ## to work with contours.  Therefore recreate the lines from the
        ## output for contourc, and store in cell arrays.
        [c, ~] = contourc (X, Y, Z, [0, 0]);

        i = 1;
        XX = YY = {};
        while (i < length (c))
          clev = c(1,i);
          clen = c(2,i);
          XX = [XX, {c(1, i+1:i+clen)}];
          YY = [YY, {c(2, i+1:i+clen)}];
          i += clen+1;
        endwhile
      else
        if (ispolar)
          Z = feval (fun, X);
          ## FIXME: Why aren't singularities eliminated for polar plots?
        elseif (isplot)
          Z = feval (fun, X);
          ## Eliminate the singularities
          Z = __eliminate_sing__ (Z);
          domain = find_valid_domain (X, [], Z);
        elseif (iscontour)
          Z = feval (fun, X, Y);
          Z = __eliminate_sing__ (Z);
        else  #  mesh, surf plots
          Z = feval (fun, X, Y);
          Z = __eliminate_sing__ (Z);
          if (circ)
            ## Use domain calculated at the start.
            ## The X, Y grids are non-monotonic after conversion from polar
            ## coordinates and find_valid_domain fails.

          elseif (auto_domain && ! auto_domain_done)
            valid_domain = find_valid_domain (X, Y, Z);
            domain_ok = all (domain == valid_domain);
            domain = valid_domain;
            auto_domain_done = true;  # ensures only 1 round of do loop done
          else
            if (! auto_domain_done)
              domain = find_valid_domain (X, Y, Z);
            endif
          endif
        endif
      endif
    endif
  until (domain_ok)

  ## Now, actually call the correct plot function with valid data and domain.
  oldfig = [];
  if (! isempty (hax))
    oldfig = get (0, "currentfigure");
  endif
  unwind_protect
    hax = newplot (hax);
    if (iscontour)
      [~, h] = feval (pltfunc, hax, X, Y, Z);
    elseif (isplot && nargs == 2)
      h = zeros (length (XX), 1);
      hold_state = get (hax, "nextplot");
      for i = 1 : length (XX)
        if (i == 1)
          h(1) = plot (hax, XX{1}, YY{1});
          set (hax, "nextplot", "add");
          color = get (h(1), "color");
        else
          h(i) = plot (hax, XX{i}, YY{i}, "color", color);
        endif
      endfor
      set (hax, "nextplot", hold_state);
      axis (hax, domain);
    elseif (isplot || ispolar)
      h = feval (pltfunc, hax, X, Z);
      if (isplot)
        if (! parametric)
          axis (hax, domain);
        else
          axis ("equal");
        endif
      endif
    elseif (isplot3)
      if (animate)
        comet3 (hax, X, Y, Z);
      else
        h = feval (pltfunc, hax, X, Y, Z);
      endif
      grid (hax, "on");
      zlabel (hax, "z");
    else  # mesh and surf plots
      h = feval (pltfunc, hax, X, Y, Z);
      ## FIXME: surf, mesh should really do a better job of setting zlim
      if (! parametric)
        axis (hax, domain);
      endif
    endif
    xlabel (hax, xarg);
    ylabel (hax, yarg);
    title (hax, fstr);
  unwind_protect_cleanup
    if (! isempty (oldfig))
      set (0, "currentfigure", oldfig);
    endif
  end_unwind_protect

endfunction

## Eliminate bad data (complex values, infinities, singularities)
function x = __eliminate_sing__ (x)

  if (iscomplex (x))
    x(imag (x) != 0) = NaN;
  endif
  x(isinf (x)) = NaN;
  ## High rates of curvature are treated as singularities
  threshold = 0.2 * (max (x(:)) - min (x(:)));
  x(abs (del2 (x)) > threshold) = NaN;

endfunction

## Find: 1) range of function where there are not NaN values,
##       2) function is changing (not just flat surface)
function domain = find_valid_domain (X, Y, Z)

  if (isvector (Z))
    ## 2-D data for isplot
    domain = [X(1) X(end)];

    ## Guess a range which includes the "mass" of the data by using a
    ## median-based approach.  The center 3/4 of the data is used to
    ## determine the range of the data.
    ## This seems to be vaguely what Matlab does, but can't be sure.
    XX = sort (Z(isfinite (Z)));
    if (length (X) > 4)
      irlo = XX(fix (1/8 * length (XX)));
      irhi = XX(fix (7/8 * length (XX)));
      d = irhi - irlo;
      domain(3) = max (XX(1) - d/8, irlo - d);
      domain(4) = min (XX(end) + d/8, irhi + d);
    else
      domain(3:4) = [XX(1), XX(end)];
    endif

    ## Handle exceptional case of constant function
    if (domain(3) == domain(4))
      domain(3) -= 1;
      domain(4) += 1;
    endif

  else
    ## 3-D data such as mesh, surf
    Zfinite = ! isnan (Z);
    Zrows = any (Zfinite, 2);
    rmin = find (Zrows, 1, "first");
    rmax = find (Zrows, 1, "last");
    Zcols = any (Zfinite, 1);
    cmin = find (Zcols, 1, "first");
    cmax = find (Zcols, 1, "last");

    ## Handle nasty case of all NaNs
    if (isempty (rmin))
      rmin = 1; rmax = rows (Z);
    endif
    if (isempty (cmin))
      cmin = 1; cmax = columns (Z);
    endif

    if (   ! any (isnan (Z([rmin, rmax],:)(:)))
        && ! any (isnan (Z(:, [cmin, cmax])(:))))
      ## Exclude surfaces along borders which are flat (gradient =~ 0).
      ## Technically, this calculation might be better done with actual
      ## deltaX, deltaY values.  But, data is usually meshgridded
      ## (constant spacing) so working with deltaROW#, deltaCOL# is fine.
      [Zx, Zy] = gradient (Z(rmin:rmax, cmin:cmax));
      Zgrad = sqrt (Zx.^2 + Zy.^2);
      slope = ((max (Z(:)) - min (Z(:)))
                / sqrt ((rmax - rmin)^2 + (cmax - cmin)^2));
      slope /= 125;  # threshold for discarding points.
      Zrows = any (Zgrad > slope, 2);
      rmin += find (Zrows, 1, "first") - 1;
      rmax += find (Zrows, 1, "last") - rows (Zrows);
      Zcols = any (Zgrad > slope, 1);
      cmin += find (Zcols, 1, "first") - 1;
      cmax += find (Zcols, 1, "last") - columns (Zcols);
    endif

    domain = [X(1,cmin) X(1,cmax) Y(rmin,1) Y(rmax,1)];
  endif

endfunction