view scripts/sparse/cgs.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 34097a2f1f60
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} cgs (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}, @dots{})
## @deftypefnx {} {@var{x} =} cgs (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} cgs (@var{A}, @var{b}, @dots{})
## Solve @code{A x = b}, where @var{A} is a square matrix, using the
## Conjugate Gradients Squared method.
##
## The input arguments are:
##
## @itemize @minus
##
## @item @var{A} is the matrix of the linear system and it must be square.
## @var{A} can be passed as a matrix, function handle, or inline
## function @code{Afun} such that @code{Afun(x) = A * x}.  Additional
## parameters to @code{Afun} are passed after @var{x0}.
##
## @item @var{b} is the right hand side vector.  It must be a column vector
## with same number of rows of @var{A}.
##
## @item @var{tol} is the relative tolerance, if not given or set to [] the
## default value 1e-6 is used.
##
## @item @var{maxit} the maximum number of outer iterations, if not given or
## set to [] the default value @code{min (20, numel (b))} is used.
##
## @item @var{M1}, @var{M2} are the preconditioners.  The preconditioner
## matrix is given as @code{M = M1 * M2}.  Both @var{M1}
## and @var{M2} can be passed as a matrix or as a function handle or inline
## function @code{g} such that @code{g(x) = M1 \ x} or @code{g(x) = M2 \ x}.
## If M1 is empty or not passed then no preconditioners are applied.
## The technique used is the right preconditioning, i.e., it is solved
## @code{@var{A}*inv(@var{M})*y = b} and then @code{@var{x} = inv(@var{M})*y}.
##
## @item @var{x0} the initial guess, if not given or set to [] the default
## value @code{zeros (size (b))} is used.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed in
## a proper way to any of the functions (@var{A} or @var{P}) which are passed
## to @code{cgs}.
##
## The output parameters are:
##
## @itemize @minus
##
## @item @var{x} is the approximation computed.  If the method doesn't
## converge then it is the iterated with the minimum residual.
##
## @item @var{flag} indicates the exit status:
##
## @itemize @minus
## @item 0: iteration converged to the within the chosen tolerance
##
## @item 1: the maximum number of iterations was reached before convergence
##
## @item 2: the preconditioner matrix is singular
##
## @item 3: the algorithm reached stagnation
##
## @item 4: the algorithm can't continue due to a division by zero
## @end itemize
##
## @item @var{relres} is the relative residual obtained with as
## @code{(@var{A}*@var{x}-@var{b}) / @code{norm(@var{b})}}.
##
## @item @var{iter} is the iteration which @var{x} is computed.
##
## @item @var{resvec} is a vector containing the residual at each iteration.
## Doing @code{length(@var{resvec}) - 1} is possible to see the total number
## of iterations performed.
## @end itemize
##
## Let us consider a trivial problem with a tridiagonal matrix
##
## @example
## @group
## n = 20;
## A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n))  + ...
##     toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
##     sparse (1, 2, 1, 1, n) * n / 2);
## b = A * ones (n, 1);
## restart = 5;
## [M1, M2] = ilu (A); # in this tridiag case it corresponds to chol (A)'
## M = M1 * M2;
## Afun = @@(x) A * x;
## Mfun = @@(x) M \ x;
## M1fun = @@(x) M1 \ x;
## M2fun = @@(x) M2 \ x;
## @end group
## @end example
##
## @sc{Example 1:} simplest usage of @code{cgs}
##
## @example
## x = cgs (A, b, [], n)
## @end example
##
## @sc{Example 2:} @code{cgs} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## x = cgs (Afun, b, [], n)
## @end example
##
## @sc{Example 3:} @code{cgs} with a preconditioner matrix @var{M}
##
## @example
## x = cgs (A, b, [], 1e-06, n, M)
## @end example
##
## @sc{Example 4:} @code{cgs} with a function as preconditioner
##
## @example
## x = cgs (Afun, b, 1e-6, n, Mfun)
## @end example
##
## @sc{Example 5:} @code{cgs} with preconditioner matrices @var{M1}
## and @var{M2}
##
## @example
## x = cgs (A, b, [], 1e-6, n, M1, M2)
## @end example
##
## @sc{Example 6:} @code{cgs} with functions as preconditioners
##
## @example
## x = cgs (Afun, b, 1e-6, n, M1fun, M2fun)
## @end example
##
## @sc{Example 7:} @code{cgs} with as input a function requiring an argument
##
## @example
## @group
## function y = Ap (A, x, z) # compute A^z * x
##    y = x;
##    for i = 1:z
##      y = A * y;
##    endfor
##  endfunction
## Apfun = @@(x, string, p) Ap (A, x, string, p);
## x = cgs (Apfun, b, [], [], [], [], [], 2);
## @end group
## @end example
##
## @sc{Example 8:} explicit example to show that @code{cgs} uses a
## right preconditioner
##
## @example
## @group
## [M1, M2] = ilu (A + 0.3 * eye (n)); # factorization of A perturbed
## M = M1 * M2;
##
## ## reference solution computed by cgs after one iteration
## [x_ref, fl] = cgs (A, b, [], 1, M)
##
## ## right preconditioning
## [y, fl] = cgs (A / M, b, [], 1)
## x = M \ y # compare x and x_ref
##
## @end group
## @end example
##
## References:
##
## @nospell{Y. Saad}, @cite{Iterative Methods for Sparse Linear Systems},
## Second edition, 2003, SIAM
##
## @seealso{pcg, bicgstab, bicg, gmres, qmr, tfqmr}
## @end deftypefn

function [x_min, flag, relres, iter_min, resvec] = ...
         cgs (A, b, tol = [], maxit = [], M1 = [] , M2 = [], x0 = [], varargin)

  [Afun, M1fun, M2fun] = __alltohandles__ (A, b, M1, M2, "cgs");

  [tol, maxit, x0] = __default__input__ ({1e-06, min( rows(b), 20), ...
                                          zeros(size (b))}, tol, maxit, x0);

  norm_b = norm (b, 2);
  if (norm_b == 0)
    if (nargout < 2)
      printf ("The right hand side vector is all zero so cgs \n")
      printf ("returned an all zero solution without iterating.\n")
    endif
    x_min = zeros (numel (b), 1);
    iter_min = 0;
    flag = 0;
    resvec = 0;
    relres = 0;
    return;
  endif

  resvec = zeros (maxit, 1); # Preallocation of resvec

  flag = 1; # Default flag is 1, i.e. maximum number of iterations reached
  iter = iter_min = 0;
  x = x_min = x_pr = x0;
  ## x approximation at the actual iteration
  ## x_min approximation with the minimum residual
  ## x_pr approximation at the previous iteration (to check stagnation)

  r0 = rr = u = p = b - feval (Afun, x, varargin{:});
  resvec (1) = norm (r0, 2);
  rho_1 = rr' * r0;

  try
    warning ("error","Octave:singular-matrix","local");
    p_hat = feval (M1fun, p, varargin{:});
    p_hat = feval (M2fun, p_hat, varargin {:});
  catch
    flag = 2;
  end_try_catch

  while ((flag != 2) && (iter < maxit) && ...
         (resvec (iter + 1) >= tol * norm_b))
    v = feval (Afun, p_hat, varargin{:});
    prod_tmp = (rr' * v);
    if (prod_tmp == 0)
      flag = 4;
      break;
    endif
    alpha = rho_1 / prod_tmp;
    q = u - alpha * v;
    u_hat = feval(M1fun, u + q, varargin{:});
    u_hat = feval (M2fun, u_hat, varargin{:});
    x += alpha*u_hat;
    r0 -= alpha* feval (Afun, u_hat, varargin{:});
    iter += 1;
    resvec (iter + 1) = norm (r0, 2);
    if (norm (x - x_pr, 2) <= norm (x, 2) * eps) # Stagnation
      flag = 3;
      break;
    endif
    if (resvec (iter + 1) <= resvec (iter_min + 1)) # Check min residual
      x_min = x;
      iter_min = iter;
    endif
    x_pr = x;
    rho_2 = rho_1;
    rho_1 = rr' * r0;
    if (rho_1 == 0)
      flag = 4;
      break;
    endif
    beta = rho_1 / rho_2;
    u = r0 + beta * q;
    p = u + beta * (q + beta * p);
    p_hat = feval (M1fun, p, varargin {:});
    p_hat = feval (M2fun, p_hat, varargin{:});
  endwhile
  resvec = resvec (1: (iter + 1));

  relres = resvec (iter_min + 1) / norm_b;
  if (relres <= tol) && (flag = 1)
    flag = 0;
  endif

  if (nargout < 2)
    switch (flag)
      case {0}
        printf ("cgs converged at iteration %i ", iter_min);
        printf ("to a solution with relative residual %e\n", relres);
      case {1}
        printf ("cgs stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the maximum number of iterations was reached.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
      case {2}
        printf ("cgs stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the preconditioner matrix is singular.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
      case {3}
        printf ("cgs stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the method stagnated.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
      case {4}
        printf ("cgs stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the method can't continue.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
    endswitch
  endif

endfunction


%!demo
%! ## Solve system of A*x=b
%! A = [5 -1 3;-1 2 -2;3 -2 3];
%! b = [7;-1;4];
%! [a,b,c,d,e] = cgs (A,b)

%!demo
%! ## simplest use case
%! n = 20;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n))  + ...
%!     toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%!               sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.1 * eye (n));
%! M = M1 * M2;
%! x = cgs (A, b, [], n);
%! Afun = @(x) A * x;
%! x = cgs (Afun, b, [], n);
%! x = cgs (A, b, 1e-6, n, M);
%! x = cgs (A, b, 1e-6, n, M1, M2);
%! Mfun = @(z) M \ z;
%! x = cgs (Afun, b, 1e-6, n, Mfun);
%! M1fun = @(z) M1 \ z;
%! M2fun = @(z) M2 \ z;
%! x = cgs (Afun, b, 1e-6, n, M1fun, M2fun);
%! function y = Ap (A, x, z)
%!   ## compute A^z * x or (A^z)' * x
%!   y = x;
%!   for i = 1:z
%!     y = A * y;
%!   endfor
%! endfunction
%! Afun = @(x, p) Ap (A, x, p);
%! x = cgs (Afun, b, [], 2*n, [], [], [], 2); # solution of A^2 * x = b

%!demo
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n))  + ...
%!     toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%!               sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.3 * speye (n));  # factorization of A perturbed
%! M = M1 * M2;
%!
%! ## Reference solution computed by cgs after one iteration
%! [x_ref, fl] = cgs (A, b, [], 1, M);
%! x_ref
%!
%! ## right preconditioning
%! [y, fl] = cgs (A / M, b, [], 1);
%! ## Compare x and x_ref
%! x = M \ y

%!test
%! ## Check that all type of inputs work
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M1 = diag (sqrt (diag (A)));
%! M2 = M1;
%! maxit = 10;
%! Afun = @(z) A * z;
%! M1_fun = @(z) M1 \ z;
%! M2_fun = @(z) M2 \ z;
%! [x, flag] = cgs (A,b);
%! assert (flag, 0);
%! [x, flag] = cgs (A, b, [], maxit, M1, M2);
%! assert (flag, 0);
%! [x, flag] = cgs (A, b, [], maxit, M1_fun, M2_fun);
%! assert (flag, 0);
%! [x, flag] = cgs (A, b, [], maxit, M1_fun, M2);
%! assert (flag, 0);
%! [x, flag] = cgs (A, b, [], maxit, M1, M2_fun);
%! assert (flag, 0);
%! [x, flag] = cgs (Afun, b);
%! assert (flag, 0);
%! [x, flag] = cgs (Afun, b, [], maxit, M1, M2);
%! assert (flag, 0);
%! [x, flag] = cgs (Afun, b, [], maxit, M1_fun, M2);
%! assert (flag, 0);
%! [x, flag] = cgs (Afun, b, [], maxit, M1, M2_fun);
%! assert (flag, 0);
%! [x, flag] = cgs (Afun, b, [], maxit, M1_fun, M2_fun);
%! assert (flag, 0);

%!shared n, A, b, tol, maxit, M
%!
%!test
%! n = 100;
%! A = spdiags ([-ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n);
%! b = sum (A, 2);
%! tol = 1e-8;
%! maxit = 1000;
%! M = 4 * eye (n);
%! [x, flag, relres, iter, resvec] = cgs (A, b, tol, maxit, M);
%! assert (norm (b - A*x) / norm (b), 0, tol);

%!
%!test
%! maxit = 15;
%! [x, flag, relres, iter, resvec] = cgs (@(x) A * x, b, tol, maxit, M);
%! assert (norm (b - A*x) / norm (b), 0, tol);

%!test
%! a = sprand (n, n, .1);
%! A = a'*a + 100 * eye (n);
%! b = sum (A, 2);
%! [x, flag, relres, iter, resvec] = cgs (A, b, tol, [], diag (diag (A)));
%! assert (norm (b - A*x) / norm (b), 0, tol);

%!test
%! n = 5;
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = ones (n);
%! [x, flag] = cgs (A, b, [], [], M);
%! assert (flag, 2);

%!test
%! A = single (1);
%! b = 1;
%! [x, flag] = cgs (A, b);
%! assert (class (x), "single");

%!test
%! A = 1;
%! b = single (1);
%! [x, flag] = cgs (A, b);
%! assert (class (x), "single");

%!test
%! A = single (1);
%! b = single (1);
%! [x, flag] = cgs (A, b);
%! assert (class (x), "single");

%!test
%!function y = Afun (x)
%!  A = toeplitz ([2, 1, 0, 0], [2, -1, 0, 0]);
%!  y = A * x;
%!endfunction
%! [x, flag] = cgs ("Afun", [1; 2; 2; 3]);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);

%!test
%! ## test a complex linear system
%! A = toeplitz (sparse ([2, 1, 0, 0, 0]), sparse ([2, -1, 0, 0, 0])) + ...
%! 1i * toeplitz (sparse ([2, 1, 0, 0, 0]), sparse ([2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! [x, flag] = cgs (A, b);
%! assert (flag, 0);

%!test
%! ## unpreconditioned residual
%! A = toeplitz (sparse ([2, 1, 0, 0, 0]), sparse ([2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = magic (5);
%! [x, flag, relres] = cgs (A, b, [], 3, M);
%! assert (norm (b - A * x) / norm (b), relres, 8 * eps);