view scripts/sparse/pcg.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2004-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{})
## @deftypefnx {} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@var{A}, @var{b}, @dots{})
##
## Solve the linear system of equations @w{@code{@var{A} * @var{x} = @var{b}}}
## by means of the Preconditioned Conjugate Gradient iterative method.
##
## The input arguments are:
##
## @itemize
## @item @var{A} is the matrix of the linear system and it must be square.
## @var{A} can be passed as a matrix, function handle, or inline function
## @code{Afun} such that @code{Afun(x) = A * x}.  Additional parameters to
## @code{Afun} may be passed after @var{x0}.
##
## @var{A} has to be Hermitian and Positive Definite (@nospell{HPD})@.  If
## @code{pcg} detects @var{A} not to be positive definite, a warning is printed
## and the @var{flag} output is set.
##
## @item
## @var{b} is the right-hand side vector.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @w{@code{@var{b} - @var{A} * @var{x}}}.  The iteration stops if
## @w{@code{norm (@var{b} - @var{A} * @var{x})} @leq{}
## @w{@code{@var{tol} * norm (@var{b})}}}.
## If @var{tol} is omitted or empty, then a tolerance of 1e-6 is used.
##
## @item
## @var{maxit} is the maximum allowed number of iterations; if @var{maxit}
## is omitted or empty then a value of 20 is used.
##
## @item
## @var{m} is a @nospell{HPD} preconditioning matrix.  For any decomposition
## @code{@var{m} = @var{p1} * @var{p2}} such that
## @w{@code{inv (@var{p1}) * @var{A} * inv (@var{p2})}} is @nospell{HPD}, the
## conjugate gradient method is formally applied to the linear system
## @w{@code{inv (@var{p1}) * @var{A} * inv (@var{p2}) * @var{y} = inv
## (@var{p1}) * @var{b}}},
## with @code{@var{x} = inv (@var{p2}) * @var{y}} (split preconditioning).
## In practice, at each iteration of the conjugate gradient method a
## linear system with matrix @var{m} is solved with @code{mldivide}.
## If a particular factorization
## @code{@var{m} = @var{m1} * @var{m2}} is available (for instance, an
## incomplete Cholesky factorization of @var{a}), the two matrices
## @var{m1} and @var{m2} can be passed and the relative linear systems
## are solved with the @code{mldivide} operator.
## Note that a proper choice of the preconditioner may dramatically improve
## the overall performance of the method.  Instead of matrices @var{m1} and
## @var{m2}, the user may pass two functions which return the results of
## applying the inverse of @var{m1} and @var{m2} to a vector.
## If @var{m1} is omitted or empty @code{[]}, then no preconditioning
## is applied.  If no factorization of @var{m} is available, @var{m2}
## can be omitted or left [], and the input variable @var{m1} can be
## used to pass the preconditioner @var{m}.
##
## @item
## @var{x0} is the initial guess.  If @var{x0} is omitted or empty then the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed in
## an appropriate manner to any of the functions (@var{A} or @var{m1} or
## @var{m2}) that have been given to @code{pcg}.
## See the examples below for further details.
##
## The output arguments are:
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @w{@code{@var{A} * @var{x} = @var{b}}}.  If the algorithm did not converge,
## then @var{x} is the iteration which has the minimum residual.
##
## @item
## @var{flag} reports on the convergence:
##
## @itemize
## @item 0: The algorithm converged to within the prescribed tolerance.
##
## @item 1: The algorithm did not converge and it reached the maximum
## number of iterations.
##
## @item 2: The preconditioner matrix is singular.
##
## @item 3: The algorithm stagnated, i.e., the absolute value of the
## difference between the current iteration @var{x} and the previous is less
## than @code{@var{eps} * norm (@var{x},2)}.
##
## @item 4: The algorithm detects that the input (preconditioned) matrix is not
## @nospell{HPD}.
## @end itemize
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} indicates the iteration of @var{x} which it was
## computed.  Since the output @var{x} corresponds to the minimal
## residual solution, the total number of iterations that
## the method performed is given by @code{length(resvec) - 1}.
##
## @item
## @var{resvec} describes the convergence history of the method.
## @code{@var{resvec} (@var{i}, 1)} is the Euclidean norm of the residual, and
## @code{@var{resvec} (@var{i}, 2)} is the preconditioned residual
## norm, after the
## (@var{i}-1)-th iteration, @code{@var{i} = 1, 2, @dots{}, @var{iter}+1}.
## The preconditioned residual norm is defined as
## @code{@var{r}' * (@var{m} \ @var{r})} where
## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
## description of @var{m}.  If @var{eigest} is not required, only
## @code{@var{resvec} (:, 1)} is returned.
##
## @item
## @var{eigest} returns the estimate for the smallest @code{@var{eigest}(1)}
## and largest @code{@var{eigest}(2)} eigenvalues of the preconditioned matrix
## @w{@code{@var{P} = @var{m} \ @var{A}}}.  In particular, if no
## preconditioning is used, the estimates for the extreme eigenvalues of
## @var{A} are returned.  @code{@var{eigest}(1)} is an overestimate and
## @code{@var{eigest}(2)} is an underestimate, so that
## @code{@var{eigest}(2) / @var{eigest}(1)} is a lower bound for
## @code{cond (@var{P}, 2)}, which nevertheless in the limit should
## theoretically be equal to the actual value of the condition number.
## @end itemize
##
##
## Let us consider a trivial problem with a tridiagonal matrix
##
## @example
## @group
## n = 10;
## A = toeplitz (sparse ([1, 1], [1, 2], [2, 1], 1, n));
## b = A * ones (n, 1);
## M1 = ichol (A); # in this tridiagonal case it corresponds to chol (A)'
## M2 = M1';
## M = M1 * M2;
## Afun = @@(x) A * x;
## Mfun = @@(x) M \ x;
## M1fun = @@(x) M1 \ x;
## M2fun = @@(x) M2 \ x;
## @end group
## @end example
##
## @sc{Example 1:} Simplest use of @code{pcg}
##
## @example
## x = pcg (A, b)
## @end example
##
## @sc{Example 2:} @code{pcg} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## x = pcg (Afun, b)
## @end example
##
## @sc{Example 3:} @code{pcg} with a preconditioner matrix @var{M}
##
## @example
## x = pcg (A, b, 1e-06, 100, M)
## @end example
##
## @sc{Example 4:} @code{pcg} with a function as preconditioner
##
## @example
## x = pcg (Afun, b, 1e-6, 100, Mfun)
## @end example
##
## @sc{Example 5:} @code{pcg} with preconditioner matrices @var{M1}
## and @var{M2}
##
## @example
## x = pcg (A, b, 1e-6, 100, M1, M2)
## @end example
##
## @sc{Example 6:} @code{pcg} with functions as preconditioners
##
## @example
## x = pcg (Afun, b, 1e-6, 100, M1fun, M2fun)
## @end example
##
## @sc{Example 7:} @code{pcg} with as input a function requiring an argument
##
## @example
## @group
##   function y = Ap (A, x, p) # compute A^p * x
##      y = x;
##      for i = 1:p
##        y = A * y;
##      endfor
##   endfunction
## Apfun = @@(x, p) Ap (A, x, p);
## x = pcg (Apfun, b, [], [], [], [], [], 2);
## @end group
## @end example
##
## @sc{Example 8:} explicit example to show that @code{pcg} uses a
## split preconditioner
##
## @example
## @group
## M1 = ichol (A + 0.1 * eye (n)); # factorization of A perturbed
## M2 = M1';
## M = M1 * M2;
##
## ## reference solution computed by pcg after two iterations
## [x_ref, fl] = pcg (A, b, [], 2, M)
##
## ## split preconditioning
## [y, fl] = pcg ((M1 \ A) / M2, M1 \ b, [], 2)
## x = M2 \ y # compare x and x_ref
##
## @end group
## @end example
##
## References:
##
## @enumerate
## @item
## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations},
## SIAM, 1995. (the base PCG algorithm)
##
## @item
## @nospell{Y. Saad}, @cite{Iterative Methods for Sparse Linear Systems},
## @nospell{PWS} 1996. (condition number estimate from PCG)
## Revised version of this book is available online at
## @url{https://www-users.cs.umn.edu/~saad/books.html}
## @end enumerate
##
## @seealso{sparse, pcr, gmres, bicg, bicgstab, cgs}
## @end deftypefn

function [x_min, flag, relres, iter_min, resvec, eigest] =...
         pcg (A, b, tol = [], maxit = [], M1 = [], M2 = [], x0 = [], varargin)

  ## Insert the default input (if necessary)
  [tol, maxit, x0] = __default__input__ ({1e-6, min(rows (b), 20),...
                                          zeros(size (b))}, tol, maxit, x0);

  if (tol >= 1)
    warning ("Input tol is bigger than 1. \n Try to use a smaller tolerance.");
  elseif (tol <= eps / 2)
    warning ("Input tol may not be achievable by pcg. \n Try to use a bigger tolerance");
  endif

  ## Check if the input data A,b,m1,m2 are consistent (i.e. if they are
  ## matrix or function handle)

  [Afun, M1fun, M2fun] = __alltohandles__ (A, b, M1, M2, "pcg");

  maxit += 2;
  n_arg_out = nargout;

  ## Set Initial data
  b_norm = norm (b);
  if (b_norm == 0)
     if (n_arg_out < 2)
       printf ("The right hand side vector is all zero so pcg \n");
       printf ("returned an all zero solution without iterating.\n");
     endif
     x_min = b;
     flag = 0;
     relres = 0;
     resvec = 0;
     iter_min = 0;
     eigest = [NaN, NaN];
     return;
  endif

  x = x_pr = x_min = x0;

  ## x_pr (x previous) needs to check the stagnation
  ## x_min needs to save the iterated with minimum residual

  r = b - feval (Afun, x, varargin{:});
  iter = 2;
  iter_min = 0;
  flag = 1;
  resvec = zeros (maxit + 1, 2);
  resvec(1, 1) = norm (r);
  p = zeros (size (b));
  alpha = old_tau = 1;

  if (n_arg_out > 5)
    T = zeros (maxit, maxit);
  else
    T = [];
  endif

  while (resvec(iter-1,1) > tol * b_norm && iter < maxit)
    if (iter == 2) # Check whether M1 or M2 are singular
      try
        warning ("error","Octave:singular-matrix","local");
        z = feval (M1fun, r, varargin{:});
        z = feval (M2fun, z, varargin{:});
      catch
        flag = 2;
        break;
      end_try_catch
    else
      z = feval (M1fun, r, varargin{:});
      z = feval (M2fun, z, varargin{:});
    endif

    tau = z' * r;
    resvec(iter - 1, 2) = sqrt (tau);
    beta = tau / old_tau;
    old_tau = tau;
    p = z + beta * p;
    w = feval (Afun, p, varargin{:});

    ## Needed only for eigest.

    old_alpha = alpha;
    den = p' * w;
    alpha = tau / den;

    ## Check if alpha is negative and/or if it has a consistent
    ## imaginary part: if yes then A probably is not positive definite
    if ((abs (imag (tau)) >= abs (real (tau)) * tol) || ...
        real (tau) <= 0 || ...
        (abs (imag (den)) >= abs (real (den)) * tol) || ...
        (real (den) <= 0))
      flag = 4;
      break;
    endif

    x += alpha * p;
    r -= alpha * w;
    resvec(iter, 1) = norm (r);
    ## Check if the iterated has minimum residual
    if (resvec (iter,1) <= resvec (iter_min + 1,1))
      x_min = x;
      iter_min = iter - 1;
    endif
    if (n_arg_out > 5 && iter > 2)
      T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
                                    [1, sqrt(beta); sqrt(beta), beta] ./ ...
                                    old_alpha;
    endif
    iter += 1;
    if (norm (x - x_pr) <= eps * norm (x)) # Check the stagnation
      flag = 3;
      break;
    endif
    x_pr = x;
  endwhile

  if (n_arg_out > 5)
  ## Apply the preconditioner once more and finish with the precond
  ## residual.
    z = feval (M1fun, r, varargin{:});
    z = feval (M2fun, z, varargin{:});
  endif

  ## (Eventually) computes the eigenvalue of inv(m2)*inv(m1)*A
  if (n_arg_out > 5)
    if (flag != 4)
      if (iter > 3)
        T = T(2:iter-2,2:iter-2);
        l = eig (T);
        eigest = [min(l), max(l)];
      else
        eigest = [NaN, NaN];
        warning ("pcg: eigenvalue estimate failed: iteration converged too fast");
      endif
    else
      eigest = [NaN, NaN];
      warning ('pcg: eigenvalue estimate failed: matrix not positive definite?');
    endif
    resvec(iter - 1, 2) = sqrt (r' * z);
    resvec  = resvec (1:(iter-1), :);
  else
    eigest = [NaN, NaN];
    resvec = resvec(1:(iter-1),1);
  endif

  ## Set the last variables

  if (flag == 2)
    relres = 1;
  elseif (resvec (1, 1) == 0)
    relres = 0;
  else
    relres = resvec(iter_min+1, 1) ./ b_norm;
  endif

  iter -= 2; # compatibility

  ## Set the flag in the proper way if flag not 3, 4 or 2
  if (flag == 2)
    flag = 2;
  elseif (flag == 1) && (relres <= tol)
    flag = 0;
  endif

  if (n_arg_out < 2)
    switch (flag)
      case {0}
        printf ("pcg converged at iteration %d ", iter_min);
        printf ("with relative residual %d\n", relres);
      case {1}
        printf ("pcg stopped at iteration %d ", iter+1);
        printf ("without converging to the desired tolerance %d ", tol);
        printf ("because the maximum number of iteration was reached, \n");
        printf ("The iterated returned (number %d) ",iter_min);
        printf ("has relative residual %d \n", relres);
      case {2}
        printf ("pcg stopped at iteration %d ", iter+1)
        printf ("without converging to the desired tolerance %d ", tol);
        printf ("because the preconditioned matrix is singular.\n");
        printf ("The iterated returned (number %d) ", iter_min);
        printf ("has relative residual %d \n", relres);
      case {3}
        printf ("pcg stopped at iteration %d ", iter+1);
        printf ("without converging to the desired tolerance %d ", tol);
        printf ("because of stagnation. \n");
        printf ("The iterated returned (number %d) ", iter_min);
        printf ("has relative residual %d.\n", relres);
      case {4}
        printf ("pcg stopped at iteration %d ", iter + 1);
        printf ("without converging to the desired tolerance %d ",tol);
        printf ("because the (preconditioned) matrix is not positive definite. \n");
        printf ("The iterate returned (number %d) ", iter_min);
        printf ("has relative residual %d \n", relres);
    endswitch
  endif

endfunction


%!demo # simplest use
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1], 1, n));
%! b = A * ones (n, 1);
%! M1 = ichol (A);  # for this tridiagonal case it corresponds to chol (A)'
%! M2 = M1';
%! M = M1 * M2;
%! x = pcg (A, b);
%! Afun = @(x) A * x;
%! x = pcg (Afun, b);
%! x = pcg (A, b, 1e-6, 100, M);
%! x = pcg (A, b, 1e-6, 100, M1, M2);
%! Mfun = @(x) M \ x;
%! x = pcg (Afun, b, 1e-6, 100, Mfun);
%! M1fun = @(x) M1 \ x;
%! M2fun = @(x) M2 \ x;
%! x = pcg (Afun, b, 1e-6, 100, M1fun, M2fun);
%! function y = Ap (A, x, p)  # compute A^p * x
%!    y = x;
%!    for i = 1:p
%!      y = A * y;
%!    endfor
%!  endfunction
%! Afun = @(x, p) Ap (A, x, p);
%! ## solution of A^2 * x = b
%! x = pcg (Afun, b, [], [], [], [], [], 2);

%!demo
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1], 1, n));
%! b = A * ones (n, 1);
%! M1 = ichol (A + 0.1 * eye (n));  # Perturb the factorization of A
%! M2 = M1';
%! M = M1 * M2;
%!
%! ## Reference solution computed by pcg after two iterations
%! [x_ref, fl] = pcg (A, b, [], 2, M);
%! x_ref
%!
%! ## Split preconditioning
%! [y, fl] = pcg ((M1 \ A) / M2, M1 \ b, [], 2);
%! x = M2 \ y  # compare x and x_ref
%!test
%! ## Check that all type of inputs work
%! A = toeplitz (sparse ([2, 1 ,0, 0, 0]));
%! b = A * ones (5, 1);
%! M1 = diag (sqrt (diag (A)));
%! M2 = M1;  # M1 * M2 is the Jacobi preconditioner
%! Afun = @(z) A*z;
%! M1_fun = @(z) M1 \ z;
%! M2_fun = @(z) M2 \ z;
%! [x, flag, ~, iter] = pcg (A,b);
%! assert (flag, 0);
%! [x, flag, ~ , iter] = pcg (A, b, [], [], M1 * M2);
%! assert (flag, 0);
%! [x, flag, ~ , iter] = pcg (A, b, [], [], M1, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (A, b, [], [], M1_fun, M2_fun);
%! assert (flag, 0);
%! [x, flag] = pcg (A, b,[],[], M1_fun, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (A, b,[],[], M1, M2_fun);
%! assert (flag, 0);
%! [x, flag] = pcg (Afun, b);
%! assert (flag, 0);
%! [x, flag] = pcg (Afun, b,[],[], M1 * M2);
%! assert (flag, 0);
%! [x, flag] = pcg (Afun, b,[],[], M1, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (Afun, b,[],[], M1_fun, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (Afun, b,[],[], M1, M2_fun);
%! assert (flag, 0);
%! [x, flag] = pcg (Afun, b,[],[], M1_fun, M2_fun);
%! assert (flag, 0);

%!test
%! ## solve a small diagonal system
%! N = 10;
%! A = diag ([1:N]);  b = rand (N, 1);
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);

%!test
%! ## A is not positive definite
%! ## The indefiniteness of A is detected.
%! N = 10;
%! A = -diag ([1:N]);  b = sum (A, 2);
%! [x, flag] = pcg (A, b, [], N + 1);
%! assert (flag, 4);

%!test
%! ## solve tridiagonal system, do not converge in default 20 iterations
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N, 1);
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12);
%! assert (flag);
%! assert (relres >= 1.0);

%!warning <iteration converged too fast>
%! ## solve tridiagonal system with "perfect" preconditioner which converges
%! ## in one iteration, so the eigest does not work and issues a warning.
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N, 1);
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);
%!
%! assert (isnan (eigest), isnan ([NaN, NaN]));

%!test
%! ## pcg detect a non-Hermitian matrix, with a considerable imaginary part.
%! ## In this example, Matlab does not recognize the wrong type of matrix and
%! ## makes iterations until it reaches maxit.
%! N = 10;
%! A = diag (1:N) + 1e-4*i;
%! b = ones (N, 1);
%! [x, flag] = pcg (A, b, []);
%! assert (flag, 4);

%!test
%! ## The imaginary part is not influent (it is too small), so pcg doesn't stop
%! N = 10;
%! A = diag (1:N) + 1e-10*i;
%! b = ones (N, 1);
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);

%!test
%! ## pcg solves linear system with A Hermitian positive definite
%! N = 20;
%! A = sparse (toeplitz ([4, 1, zeros(1, 18)])) + ...
%!     i * sparse (toeplitz ([0, 1, zeros(1, 18)], [0, -1, zeros(1,18)]));
%! b = A * ones (N, 1);
%! Hermitian_A = ishermitian (A);
%! [x, flag] = pcg (A, b, [], 2*N);
%! assert (Hermitian_A, true);
%! assert (flag, 0);
%! assert (x, ones (N, 1), -1e-4);

%!testif HAVE_CHOLMOD
%! ## pcg solves preconditioned linear system with A HPD
%! N = 20;
%! A = sparse (toeplitz ([4, 1, zeros(1, 18)])) + ...
%!     i * sparse (toeplitz ([0, 1, zeros(1, 18)], [0, -1, zeros(1,18)]));
%! b = A * ones (N, 1);
%! M2 = chol (A + 0.1 * eye (N));  # Factor of a perturbed matrix
%! M = M2' * M2;
%! Hermitian_A = ishermitian (A);
%! Hermitian_M = ishermitian (M);
%! [x, flag] = pcg (A, b, [], 2*N, M);
%! assert (Hermitian_A, true);
%! assert (Hermitian_M, true);
%! assert (flag, 0);
%! assert (x, ones (N, 1), -1e-4);

%!test
%! ## pcg recognizes that the preconditioner matrix is singular
%! N = 3;
%! A = toeplitz ([2, 1, 0]);
%! M = [1 0 0; 0 1 0; 0 0 0];  # the last row is zero
%! [x, flag] = pcg (A, ones (3, 1), [], [], M);
%! assert (flag, 2);

%!test
%! A = rand (4);
%! A = A' * A;
%! [x, flag] = pcg (A, zeros (4, 1), [], [], [], [], ones (4, 1));
%! assert (x, zeros (4, 1));

## Test return types
%!test
%! A = single (1);
%! b = 1;
%! [x, flag] = pcg (A, b);
%! assert (class (x), "single");

%!test
%! A = 1;
%! b = single (1);
%! [x, flag] = pcg (A, b);
%! assert (class (x), "single");

%!test
%! A = single (1);
%! b = single (1);
%! [x, flag] = pcg (A, b);
%! assert (class (x), "single");

%!test
%!function y = Afun (x)
%!   A = toeplitz ([2, 1, 0, 0]);
%!   y = A * x;
%!endfunction
%! [x, flag] = pcg ("Afun", [3; 4; 4; 3]);
%! assert (x, ones (4, 1), 1e-6);

%!test
%! ## unpreconditioned residual
%! A = toeplitz (sparse ([4, 1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = toeplitz (sparse ([2, 1, 0, 0, 0]));
%! [x, flag, relres] = pcg (A, b, [], 2, M);
%! assert (norm (b - A * x) / norm (b), relres,  8 * eps);

%!test <*59776>
%! A = [ 1.00000000  -0.00054274  -0.00066848;
%!      -0.00054274   1.00000000  -0.00060330;
%!      -0.00066848  -0.00060330   1.00000000];
%! b = [1 1 1]';
%! [x, flag, relres, iter, resvec] = pcg (A, b, 1e-6, 4, [], [], [1; 1; 1]);
%! assert (flag, 0);
%! assert (relres, resvec(2) / norm (b));
%! assert (iter, 1);