view scripts/specfun/gammainc.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 76269aa97398
children 5d3faba0342e
line wrap: on
line source

########################################################################
##
## Copyright (C) 2016-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} gammainc (@var{x}, @var{a})
## @deftypefnx {} {} gammainc (@var{x}, @var{a}, @var{tail})
## Compute the normalized incomplete gamma function.
##
## This is defined as
## @tex
## $$
##  \gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                                 x
##                        1       /
## gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
##                   gamma (a)    /
##                             t=0
## @end group
## @end example
##
## @end ifnottex
## with the limiting value of 1 as @var{x} approaches infinity.
## The standard notation is @math{P(a,x)}, e.g., @nospell{Abramowitz} and
## @nospell{Stegun} (6.5.1).
##
## If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned
## for each element of @var{x} and vice versa.
##
## If neither @var{x} nor @var{a} is scalar then the sizes of @var{x} and
## @var{a} must agree, and @code{gammainc} is applied element-by-element.
## The elements of @var{a} must be non-negative.
##
## By default, @var{tail} is @qcode{"lower"} and the incomplete gamma function
## integrated from 0 to @var{x} is computed.  If @var{tail} is @qcode{"upper"}
## then the complementary function integrated from @var{x} to infinity is
## calculated.
##
## If @var{tail} is @qcode{"scaledlower"}, then the lower incomplete gamma
## function is multiplied by
## @tex
## $\Gamma(a+1)\exp(x)x^{-a}$.
## @end tex
## @ifnottex
## @math{gamma(a+1)*exp(x)/(x^a)}.
## @end ifnottex
## If @var{tail} is @qcode{"scaledupper"}, then the upper incomplete gamma
## function is multiplied by the same quantity.
##
## References:
##
## @nospell{M. Abramowitz and I.A. Stegun},
## @cite{Handbook of mathematical functions},
## @nospell{Dover publications, Inc.}, 1972.
##
## @nospell{W. Gautschi},
## @cite{A computational procedure for incomplete gamma functions},
## @nospell{ACM Trans.@: Math Software}, pp.@: 466--481, Vol 5, No.@: 4, 2012.
##
## @nospell{W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery},
## @cite{Numerical Recipes in Fortran 77}, ch.@: 6.2, Vol 1, 1992.
##
## @seealso{gamma, gammaincinv, gammaln}
## @end deftypefn

## P(a,x) = gamma(a,x)/Gamma(a), upper
## 1-P(a,x)=Q(a,x)=Gamma(a,x)/Gamma(a), lower

function y = gammainc (x, a, tail = "lower")

  if (nargin < 2)
    print_usage ();
  endif

  [err, x, a] = common_size (x, a);
  if (err > 0)
    error ("gammainc: X and A must be of common size or scalars");
  endif

  if (iscomplex (x) || iscomplex (a))
    error ("gammainc: all inputs must be real");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  x_sz = size (x);
  x = x(:);
  a = a(:);

  if (any (a < 0))
    error ("gammainc: A must be non-negative");
  endif

  if (nargin == 3
      && ! any (strcmpi (tail, {"lower","upper","scaledlower","scaledupper"})))
    error ("gammainc: invalid value for TAIL");
  endif
  tail = tolower (tail);

  ## If any of the arguments is single then the output should be as well.
  if (strcmp (class (x), "single") || strcmp (class (a), "single"))
    x = single (x);
    a = single (a);
  endif

  ## Convert to floating point if necessary
  if (isinteger (x))
    x = double (x);
  endif
  if (isinteger (a))
    a = double (a);
  endif

  ## Initialize output array
  y = zeros (x_sz, class (x));

  ## Different x, a combinations are handled by different subfunctions.
  todo = true (size (x));  # Track which elements need to be calculated.

  ## Case 0: x == Inf, a == Inf
  idx = (x == Inf) & (a == Inf);
  if (any (idx))
    y(idx) = NaN;
    todo(idx) = false;
  endif

  ## Case 1: x == 0, a == 0.
  idx = (x == 0) & (a == 0);
  if (any (idx))
    y(idx) = gammainc_00 (tail);
    todo(idx) = false;
  endif

  ## Case 2: x == 0.
  idx = todo & (x == 0);
  if (any (idx))
    y(idx) = gammainc_x0 (tail);
    todo(idx) = false;
  endif

  ## Case 3: x = Inf
  idx = todo & (x == Inf);
  if (any (idx))
    y(idx) = gammainc_x_inf (tail);
    todo(idx) = false;
  endif

  ## Case 4: a = Inf
  idx = todo & (a == Inf);
  if (any (idx))
    y(idx) = gammainc_a_inf (tail);
    todo(idx) = false;
  endif

  ## Case 5: a == 0.
  idx = todo & (a == 0);
  if (any (idx))
    y(idx) = gammainc_a0 (x(idx), tail);
    todo(idx) = false;
  endif

  ## Case 6: a == 1.
  idx = todo & (a == 1);
  if (any (idx))
    y(idx) = gammainc_a1 (x(idx), tail);
    todo(idx) = false;
  endif

  ## Case 7: positive integer a; exp (x) and a! both under 1/eps.
  idx = (todo
         & (a == fix (a)) & (a > 1) & (a <= 18) & (x <= 36) & (abs (x) >= .1));
  if (any (idx))
    y(idx) = gammainc_an (x(idx), a(idx), tail);
    todo(idx) = false;
  endif

  ## For a < 2, x < 0, we increment a by 2 and use a recurrence formula after
  ## the computations.

  flag_a_small = todo & (abs (a) > 0) & (abs (a) < 2) & (x < 0);
  a(flag_a_small) += 2;

  flag_s = (((x + 0.25 < a) | (x < 0)) & (x > -20)) | (abs (x) < 1);

  ## Case 8: x, a relatively small.
  idx = todo & flag_s;
  if (any (idx))
    y(idx) = gammainc_s (x(idx), a(idx), tail);
    todo(idx) = false;
  endif

  ## Case 9: x positive and large relative to a.
  idx = todo;
  if (any (idx))
    y(idx) = gammainc_l (x(idx), a(idx), tail);
    todo(idx) = false;
  endif

  if (any (flag_a_small))
    if (strcmp (tail, "lower"))
      y(flag_a_small) += D (x(flag_a_small), a(flag_a_small) - 1) + ...
        D (x(flag_a_small), a(flag_a_small) - 2);
    elseif (strcmp (tail, "upper"))
      y(flag_a_small) -= D (x(flag_a_small), a(flag_a_small) - 1) + ...
           D (x(flag_a_small), a(flag_a_small) - 2);
    elseif (strcmp (tail, "scaledlower"))
      y(flag_a_small) = y(flag_a_small) .* (x(flag_a_small) .^ 2) ./ ...
        (a(flag_a_small) .* (a(flag_a_small) - 1)) + (x(flag_a_small) ./ ...
          (a(flag_a_small) - 1)) + 1;
    elseif (strcmp (tail, "scaledupper"))
      y(flag_a_small) = y(flag_a_small) .* (x(flag_a_small) .^ 2) ./ ...
        (a(flag_a_small) .* (a(flag_a_small) - 1)) - (x(flag_a_small) ./ ...
          (a(flag_a_small) - 1)) - 1;
     endif
  endif

endfunction

## Subfunctions to handle each case:

## x == 0, a == 0.
function y = gammainc_00 (tail)
  if (strcmp (tail, "upper") || strcmp (tail, "scaledupper"))
    y = 0;
  else
    y = 1;
  endif
endfunction

## x == 0.
function y = gammainc_x0 (tail)
  if (strcmp (tail, "lower"))
    y = 0;
  elseif (strcmp (tail, "upper") || strcmp (tail, "scaledlower"))
    y = 1;
  else
    y = Inf;
  endif
endfunction

## x == Inf.
function y = gammainc_x_inf (tail)
  if (strcmp (tail, "lower"))
    y = 1;
  elseif (strcmp (tail, "upper") || strcmp (tail, "scaledupper"))
    y = 0;
  else
    y = Inf;
  endif
endfunction

## a == Inf.
function y = gammainc_a_inf (tail)
  if (strcmp (tail, "lower"))
    y = 0;
  elseif (strcmp (tail, "upper") || strcmp (tail, "scaledlower"))
    y = 1;
  else
    y = Inf;
  endif
endfunction

## a == 0.
function y = gammainc_a0 (x, tail)
  if (strcmp (tail, "lower"))
    y = 1;
  elseif (strcmp (tail, "scaledlower"))
    y = exp (x);
  else
    y = 0;
  endif
endfunction

## a == 1.
function y = gammainc_a1 (x, tail)

  if (strcmp (tail, "lower"))
    if (abs (x) < 1/2)
      y = - expm1 (-x);
    else
      y = 1 - exp (-x);
    endif
  elseif (strcmp (tail, "upper"))
    y = exp (-x);
  elseif (strcmp (tail, "scaledlower"))
    if (abs (x) < 1/2)
      y = expm1 (x) ./ x;
    else
      y = (exp (x) - 1) ./ x;
    endif
  else
    y = 1 ./ x;
  endif

endfunction

## positive integer a; exp (x) and a! both under 1/eps
## uses closed-form expressions for nonnegative integer a
## -- http://mathworld.wolfram.com/IncompleteGammaFunction.html.
function y = gammainc_an (x, a, tail)

  y = t = ones (size (x), class (x));
  i = 1;
  while (any (a(:) > i))
    jj = (a > i);
    t(jj) .*= (x(jj) / i);
    y(jj) += t(jj);
    i++;
  endwhile
  if (strcmp (tail, "lower"))
    y = 1 - exp (-x) .* y;
  elseif (strcmp (tail, "upper"))
    y .*= exp (-x);
  elseif (strcmp (tail, "scaledlower"))
    y = (1 - exp (-x) .* y) ./ D(x, a);
  elseif (strcmp (tail, "scaledupper"))
    y .*= exp (-x) ./ D(x, a);
  endif

endfunction

## x + 0.25 < a | x < 0 | abs(x) < 1.
## Numerical Recipes in Fortran 77 (6.2.5)
## series
function y = gammainc_s (x, a, tail)

  if (strcmp (tail, "scaledlower") || strcmp (tail, "scaledupper"))
    y = ones (size (x), class (x));
    term = x ./ (a + 1);
  else
    ## Of course it is possible to scale at the end, but some tests fail.
    ## And try gammainc (1,1000), it take 0 iterations if you scale now.
    y = D (x,a);
    term = y .* x ./ (a + 1);
  endif
  n = 1;
  while (any (abs (term(:)) > (abs (y(:)) * eps)))
    ## y can be zero from the beginning (gammainc (1,1000))
    jj = abs (term) > abs (y) * eps;
    n += 1;
    y(jj) += term(jj);
    term(jj) .*= x(jj) ./ (a(jj) + n);
  endwhile
  if (strcmp (tail, "upper"))
    y = 1 - y;
  elseif (strcmp (tail, "scaledupper"))
    y = 1 ./ D (x,a) - y;
  endif

endfunction

## x positive and large relative to a
## NRF77 (6.2.7)
## Gamma (a,x)/Gamma (a)
## Lentz's algorithm
## __gammainc__ in libinterp/corefcn/__gammainc__.cc
function y = gammainc_l (x, a, tail)

  y = __gammainc__ (x, a);
  if (strcmp (tail,  "lower"))
    y = 1 - y .* D (x, a);
  elseif (strcmp (tail, "upper"))
    y .*= D (x, a);
  elseif (strcmp (tail, "scaledlower"))
    y = 1 ./ D (x, a) - y;
  endif

endfunction

## Compute exp(-x)*x^a/Gamma(a+1) in a stable way for x and a large.
##
## L. Knusel, Computation of the Chi-square and Poisson distribution,
## SIAM J. Sci. Stat. Comput., 7(3), 1986
## which quotes Section 5, Abramowitz&Stegun 6.1.40, 6.1.41.
function y = D (x, a)

  athresh = 10;  # FIXME: can this be better tuned?
  y = zeros (size (x), class (x));

  todo = true (size (x));
  todo(x == 0) = false;

  ii = todo & (x > 0) & (a > athresh) & (a >= x);
  if (any (ii))
    lnGa = log (2 * pi * a(ii)) / 2 + 1 ./ (12 * a(ii)) - ...
           1 ./ (360 * a(ii) .^ 3) + 1 ./ (1260 * a(ii) .^ 5) - ...
           1 ./ (1680 * a(ii) .^ 7) + 1 ./ (1188 * a(ii) .^ 9)- ...
           691 ./ (87360 * a(ii) .^ 11) + 1 ./ (156 * a(ii) .^ 13) - ...
           3617 ./ (122400 * a(ii) .^ 15) + ...
           43867 ./ (244188 * a(ii) .^ 17) - 174611 ./ (125400 * a(ii) .^ 19);
    lns = log1p ((a(ii) - x(ii)) ./ x(ii));
    y(ii) = exp ((a(ii) - x(ii)) - a(ii) .* lns - lnGa);
    todo(ii) = false;
  endif

  ii = todo & (x > 0) & (a > athresh) & (a < x);
  if (any (ii))
    lnGa = log (2 * pi * a(ii)) / 2 + 1 ./ (12 * a(ii)) - ...
           1 ./ (360 * a(ii) .^ 3) + 1 ./ (1260 * a(ii) .^ 5) - ...
           1 ./ (1680 * a(ii) .^ 7) + 1 ./ (1188 * a(ii) .^ 9)- ...
           691 ./ (87360 * a(ii) .^ 11) + 1 ./ (156 * a(ii) .^ 13) - ...
           3617 ./ (122400 * a(ii) .^ 15) + ...
           43867 ./ (244188 * a(ii) .^ 17) - 174611 ./ (125400 * a(ii) .^ 19);
    lns = -log1p ((x(ii) - a(ii)) ./ a(ii));
    y(ii) = exp ((a(ii) - x(ii)) - a(ii) .* lns - lnGa);
    todo(ii) = false;
  endif

  ii = todo & ((x <= 0) | (a <= athresh));
  if (any (ii))  # standard formula for a not so large.
    y(ii) = exp (a(ii) .* log (x(ii)) - x(ii) - gammaln (a(ii) + 1));
    todo(ii) = false;
  endif

  ii = (x < 0) & (a == fix (a));
  if (any (ii))  # remove spurious imaginary part.
    y(ii) = real (y(ii));
  endif

endfunction


## Test: case 1,2,5
%!assert (gammainc ([0, 0, 1], [0, 1, 0]), [1, 0, 1])
%!assert (gammainc ([0, 0, 1], [0, 1, 0], "upper"), [0, 1, 0])
%!assert (gammainc ([0, 0, 1], [0, 1, 0], "scaledlower"), [1, 1, exp(1)])
%!assert (gammainc ([0, 0, 1], [0, 1, 0], "scaledupper"), [0, Inf, 0])

## Test: case 3,4
%!assert (gammainc ([2, Inf], [Inf, 2]), [0, 1])
%!assert (gammainc ([2, Inf], [Inf, 2], "upper"), [1, 0])
%!assert (gammainc ([2, Inf], [Inf, 2], "scaledlower"), [1, Inf])
%!assert (gammainc ([2, Inf], [Inf, 2], "scaledupper"), [Inf, 0])

## Test: case 5
## Matlab fails for this test
%!assert (gammainc (-100,1,"upper"), exp (100), -eps)

## Test: case 6
%!assert (gammainc ([1, 2, 3], 1), 1 - exp (-[1, 2, 3]))
%!assert (gammainc ([1, 2, 3], 1, "upper"), exp (- [1, 2, 3]))
%!assert (gammainc ([1, 2, 3], 1, "scaledlower"), ...
%!        (exp ([1, 2, 3]) - 1) ./ [1, 2, 3])
%!assert (gammainc ([1, 2, 3], 1, "scaledupper"), 1 ./ [1, 2, 3])

## Test: case 7
%!assert (gammainc (2, 2, "lower"), 0.593994150290162, -2e-15)
%!assert (gammainc (2, 2, "upper"), 0.406005849709838, -2e-15)
%!assert (gammainc (2, 2, "scaledlower"), 2.194528049465325, -2e-15)
%!assert (gammainc (2, 2, "scaledupper"), 1.500000000000000, -2e-15)
%!assert (gammainc ([3 2 36],[2 3 18], "upper"), ...
%!        [4/exp(3) 5*exp(-2) (4369755579265807723 / 2977975)/exp(36)], -eps)
%!assert (gammainc (10, 10), 1 - (5719087 / 567) * exp (-10), -eps)
%!assert (gammainc (10, 10, "upper"), (5719087 / 567) * exp (-10), -eps)

## Test: case 8
%!assert (gammainc (-10, 10), 3.112658265341493126871617e7, -2*eps)
## Matlab fails this next one%!      %!
%!assert (isreal (gammainc (-10, 10)), true)
%!assert (gammainc (-10, 10.1, "upper"), ...
%!        -2.9582761911890713293e7-1i * 9.612022339061679758e6, -30*eps)
%!assert (gammainc (-10, 10, "upper"), -3.112658165341493126871616e7, ...
%!        -2*eps)
%!assert (gammainc (-10, 10, "scaledlower"), 0.5128019364747265, -1e-14)
%!assert (gammainc (-10, 10, "scaledupper"), -0.5128019200000000, -1e-14)
%!assert (gammainc (200, 201, "upper"), 0.518794309678684497, -2 * eps)
%!assert (gammainc (200, 201, "scaledupper"),
%!        18.4904360746560462660798514, -eps)
## Here we are very good (no D (x,a)) involved
%!assert (gammainc (1000, 1000.5, "scaledlower"), 39.48467539583672271, -2*eps)
%!assert (gammainc (709, 1000, "upper"), 0.99999999999999999999999954358, -eps)

## Test: case 9
%!test <*47800>
%! assert (gammainc (60, 6, "upper"), 6.18022358081160257327264261e-20,
%!         -10*eps);
## Matlab is better here than Octave
%!assert (gammainc (751, 750, "upper"), 0.4805914320558831327179457887, -12*eps)
%!assert (gammainc (200, 200, "upper"), 0.49059658199276367497217454, -6*eps)
%!assert (gammainc (200, 200), 0.509403418007236325027825459574527043, -5*eps)
%!assert (gammainc (200, 200, "scaledupper"), 17.3984438553791505135122900,
%!       -3*eps)
%!assert (gammainc (200, 200, "scaledlower"), 18.065406676779221643065, -8*eps)
%!assert (gammainc (201, 200, "upper"), 0.46249244908276709524913736667,
%!        -7*eps)
%!assert <*54550> (gammainc (77, 2), 1)

%!assert (gammainc (77, 2, "upper"), 0, -eps)
%!assert (gammainc (1000, 3.1), 1)
%!assert (gammainc (1000, 3.1, "upper"), 0)

## Test small argument
%!assert (gammainc ([1e-05, 1e-07,1e-10,1e-14], 0.1), ...
%!        [0.33239840504050, 0.20972940370977, 0.10511370061022, ...
%!        0.041846517936723], 1e-13);

%!assert (gammainc ([1e-05, 1e-07,1e-10,1e-14], 0.2), ...
%!        [0.10891226058559, 0.043358823442178, 0.010891244210402, ...
%!        0.0017261458806785], 1e-13);

%!test
%!assert (gammainc ([1e-02, 1e-03, 1e-5, 1e-9, 1e-14], 0.9), ...
%!        [0.016401189184068, 0.0020735998660840, 0.000032879756964708, ...
%!        8.2590606569241e-9, 2.6117443021738e-13], -1e-12);

%!test
%!assert (gammainc ([1e-02, 1e-03, 1e-5, 1e-9, 1e-14], 2), ...
%!        [0.0000496679133402659, 4.99666791633340e-7, 4.99996666679167e-11, ...
%!        4.99999999666667e-19, 4.99999999999997e-29], -1e-12);

%!test <*53543>
%! y_exp = 9.995001666250085e-04;
%! assert (gammainc (1/1000, 1), y_exp, -eps);

%!test <53612>
%! assert (gammainc (-20, 1.1, "upper"), ...
%!         6.50986687074979e8 + 2.11518396291149e8*i, -1e-13);

## Test conservation of the class (five tests for each subroutine).
%!assert (class (gammainc (0, 1)) == "double")
%!assert (class (gammainc (single (0), 1)) == "single")
%!assert (class (gammainc (int8 (0), 1)) == "double")
%!assert (class (gammainc (0, single (1))) == "single")
%!assert (class (gammainc (0, int8 (1))) == "double")
%!assert (class (gammainc (1, 0)) == "double")
%!assert (class (gammainc (single (1), 0)) == "single")
%!assert (class (gammainc (int8 (1), 0)) == "double")
%!assert (class (gammainc (1, single (0))) == "single")
%!assert (class (gammainc (1, int8 (0))) == "double")
%!assert (class (gammainc (1, 1)) == "double")
%!assert (class (gammainc (single (1), 1)) == "single")
%!assert (class (gammainc (int8 (1), 1)) == "double")
%!assert (class (gammainc (1, single (1))) == "single")
%!assert (class (gammainc (1, int8 (1))) == "double")
%!assert (class (gammainc (1, 2)) == "double")
%!assert (class (gammainc (single (1), 2)) == "single")
%!assert (class (gammainc (int8 (1), 2)) == "double")
%!assert (class (gammainc (1, single (2))) == "single")
%!assert (class (gammainc (1, int8 (2))) == "double")
%!assert (class (gammainc (-1, 0.5)) == "double")
%!assert (class (gammainc (single (-1), 0.5)) == "single")
%!assert (class (gammainc (int8 (-1), 0.5)) == "double")
%!assert (class (gammainc (-1, single (0.5))) == "single")
%!assert (class (gammainc (-1, int8 (0.5))) == "double")
%!assert (class (gammainc (1, 0.5)) == "double")
%!assert (class (gammainc (single (1), 0.5)) == "single")
%!assert (class (gammainc (int8 (1), 0.5)) == "double")
%!assert (class (gammainc (1, single (0.5))) == "single")
%!assert (class (gammainc (1, int8 (0.5))) == "double")

## Test input validation
%!error <Invalid call> gammainc ()
%!error <Invalid call> gammainc (1)
%!error <must be of common size or scalars> gammainc ([0, 0],[0; 0])
%!error <must be of common size or scalars> gammainc ([1 2 3], [1 2])
%!error <all inputs must be real> gammainc (2+i, 1)
%!error <all inputs must be real> gammainc (1, 2+i)
%!error <A must be non-negative> gammainc (1, [0, -1, 1])
%!error <A must be non-negative>
%! a = ones (2,2,2);
%! a(1,1,2) = -1;
%! gammainc (1, a);
%!error <invalid value for TAIL> gammainc (1,2, "foobar")