view scripts/specfun/nchoosek.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 391b35ef8b24
children 670eb988dd6a
line wrap: on
line source

########################################################################
##
## Copyright (C) 2001-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{c} =} nchoosek (@var{n}, @var{k})
## @deftypefnx {} {@var{c} =} nchoosek (@var{set}, @var{k})
##
## Compute the binomial coefficient of @var{n} or list all possible
## combinations of a @var{set} of items.
##
## If @var{n} is a scalar then calculate the binomial coefficient
## of @var{n} and @var{k} which is defined as
## @tex
## $$
##  {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
##                = {n! \over k! (n-k)!}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##  /   \
##  | n |    n (n-1) (n-2) @dots{} (n-k+1)       n!
##  |   |  = ------------------------- =  ---------
##  | k |               k!                k! (n-k)!
##  \   /
## @end group
## @end example
##
## @end ifnottex
## @noindent
## This is the number of combinations of @var{n} items taken in groups of
## size @var{k}.
##
## If the first argument is a vector, @var{set}, then generate all
## combinations of the elements of @var{set}, taken @var{k} at a time, with
## one row per combination.  The result @var{c} has @var{k} columns and
## @w{@code{nchoosek (length (@var{set}), @var{k})}} rows.
##
## For example:
##
## How many ways can three items be grouped into pairs?
##
## @example
## @group
## nchoosek (3, 2)
##    @result{} 3
## @end group
## @end example
##
## What are the possible pairs?
##
## @example
## @group
## nchoosek (1:3, 2)
##    @result{}  1   2
##        1   3
##        2   3
## @end group
## @end example
##
## Programming Note: When calculating the binomial coefficient @code{nchoosek}
## works only for non-negative, integer arguments.  Use @code{bincoeff} for
## non-integer and negative scalar arguments, or for computing many binomial
## coefficients at once with vector inputs for @var{n} or @var{k}.
##
## @seealso{bincoeff, perms}
## @end deftypefn

function C = nchoosek (v, k)

  if (nargin != 2)
    print_usage ();
  endif

  if (! isvector (v))
    error ("nchoosek: first argument must be a scalar or a vector");
  endif
  if (! (isreal (k) && isscalar (k) && k >= 0 && k == fix (k)))
    error ("nchoosek: K must be an integer >= 0");
  endif
  if (isscalar (v))
    if (isnumeric (v) && (iscomplex (v) || v < k || v < 0 || v != fix (v)))
      error ("nchoosek: N must be a non-negative integer >= K");
    endif
  endif

  n = numel (v);

  if (n == 1 && isnumeric (v))
    ## Improve precision over direct call to prod().
    ## Steps: 1) Make a list of integers for numerator and denominator,
    ## 2) filter out common factors, 3) multiply what remains.
    k = min (k, v-k);

    ## For a ~25% performance boost, multiply values pairwise so there
    ## are fewer elements in do/until loop which is the slow part.
    ## Since Odd*Even is guaranteed to be Even, also take out a factor
    ## of 2 from numerator and denominator.
    if (rem (k, 2))  # k is odd
      numer = [((v-k+1:v-(k+1)/2) .* (v-1:-1:v-(k-1)/2)) / 2, v];
      denom = [((1:(k-1)/2) .* (k-1:-1:(k+1)/2)) / 2, k];
    else             # k is even
      numer = ((v-k+1:v-k/2) .* (v:-1:v-k/2+1)) / 2;
      denom = ((1:k/2) .* (k:-1:k/2+1)) / 2;
    endif

    ## Remove common factors from numerator and denominator
    do
      for i = numel (denom):-1:1
        factors = gcd (denom(i), numer);
        [f, j] = max (factors);
        denom(i) /= f;
        numer(j) /= f;
      endfor
      denom = denom(denom > 1);
      numer = numer(numer > 1);
    until (isempty (denom))

    C = prod (numer, "native");
    if (isfloat (C) && C > flintmax (C))
      warning ("Octave:nchoosek:large-output-float", ...
               "nchoosek: possible loss of precision");
    elseif (isinteger (C) && C == intmax (C))
      warning ("Octave:nchoosek:large-output-integer", ...
               "nchoosek: result may have saturated at intmax");
    endif
  elseif (k == 0)
    C = v(zeros (1, 0));  # Return 1x0 object for Matlab compatibility
  elseif (k == 1)
    C = v(:);
  elseif (k == n)
    C = v(:).';
  elseif (k > n)
    C = v(zeros (0, k));  # return 0xk object for Matlab compatibility
  elseif (k == 2)
    ## Can do it without transpose.
    x = repelem (v(1:n-1), [n-1:-1:1]).';
    y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:});
    C = [x, y];
  elseif (k < n)
    v = v(:).';
    C = v(k:n);
    l = 1:n-k+1;
    for j = 2:k
      c = columns (C);
      cA = cellslices (C, l, c*ones (1, n-k+1), 2);
      l = c-l+1;
      b = repelem (v(k-j+1:n-j+1), l);
      C = [b; cA{:}];
      l = cumsum (l);
      l = [1, 1 + l(1:n-k)];
    endfor
    C = C.';
  endif

endfunction


%!assert (nchoosek (80, 10), bincoeff (80, 10))
%!assert (nchoosek (1:5, 3),
%!        [1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])

## Test basic behavior for various input types
%!assert (nchoosek ('a':'b', 2), 'ab')
%!assert (nchoosek ("a":"b", 2), "ab")
%!assert (nchoosek ({1,2}, 2), {1,2})
%!test
%! s(1).a = 1;
%! s(2).a = 2;
%! assert (nchoosek (s, 1), s(:));
%! assert (nchoosek (s, 2), s);

## Verify Matlab compatibility of return sizes & types
%!test
%! x = nchoosek (1:2, 0);
%! assert (size (x), [1, 0]);
%! assert (isa (x, "double"));
%! x = nchoosek (1:2, 3);
%! assert (size (x), [0, 3]);
%! assert (isa (x, "double"));

%!test
%! x = nchoosek (single (1:2), 0);
%! assert (size (x), [1, 0]);
%! assert (isa (x, "single"));
%! x = nchoosek (single (1:2), 3);
%! assert (size (x), [0, 3]);
%! assert (isa (x, "single"));

%!test
%! x = nchoosek ('a':'b', 0);
%! assert (size (x), [1, 0]);
%! assert (is_sq_string (x));
%! x = nchoosek ('a':'b', 3);
%! assert (size (x), [0, 3]);
%! assert (is_sq_string (x));

%!test
%! x = nchoosek ("a":"b", 0);
%! assert (size (x), [1, 0]);
%! assert (is_dq_string (x));
%! x = nchoosek ("a":"b", 3);
%! assert (size (x), [0, 3]);
%! assert (is_dq_string (x));

%!test
%! x = nchoosek (uint8(1):uint8(2), 0);
%! assert (size (x), [1, 0]);
%! assert (isa (x, "uint8"));
%! x = nchoosek (uint8(1):uint8(2), 3);
%! assert (size (x), [0, 3]);
%! assert (isa (x, "uint8"));

%!test
%! x = nchoosek ({1, 2}, 0);
%! assert (size (x), [1, 0]);
%! assert (iscell (x));
%! x = nchoosek ({1, 2}, 3);
%! assert (size (x), [0, 3]);
%! assert (iscell (x));

%!test
%! s.a = [1 2 3];
%! s.b = [4 5 6];
%! x = nchoosek (s, 0);
%! assert (size (x), [1, 0]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});
%! x = nchoosek (s, 3);
%! assert (size (x), [0, 3]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});

%!test
%! s.a = [1 2 3];
%! s.b = [4 5 6];
%! s(2).a = 1;  # make s a struct array rather than scalar struct
%! s(3).b = 2;  # make s at least three elements for k == 2 test below
%! x = nchoosek (s, 0);
%! assert (size (x), [1, 0]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});
%! x = nchoosek (s, 2);
%! assert (size (x), [3, 2]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});
%! x = nchoosek (s, 4);
%! assert (size (x), [0, 4]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});

%!test <61565>
%! x = nchoosek (uint8 (10), uint8 (5));
%! assert (x, uint8 (252));
%! assert (class (x), "uint8");

## Test input validation
%!error <Invalid call> nchoosek ()
%!error <Invalid call> nchoosek (1)
%!error <first argument must be a scalar or a vector> nchoosek (ones (3, 3), 1)
%!error <K must be an integer .= 0> nchoosek (100, 2i)
%!error <K must be an integer .= 0> nchoosek (100, [2 3])
%!error <K must be an integer .= 0> nchoosek (100, -45)
%!error <K must be an integer .= 0> nchoosek (100, 45.5)
%!error <N must be a non-negative integer .= K> nchoosek (100i, 2)
%!error <N must be a non-negative integer .= K> nchoosek (100, 145)
%!error <N must be a non-negative integer .= K> nchoosek (-100, 45)
%!error <N must be a non-negative integer .= K> nchoosek (100.5, 45)
%!warning <possible loss of precision> nchoosek (100, 45);
%!warning <result .* saturated> nchoosek (uint64 (80), uint64 (40));