view test/diag-perm.tst @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 605275522c37
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2009-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

########################################
## Permutation matrices

## row permutation
%!test
%! n = 5;
%! A = rand (n);
%! perm = randperm (n);
%! Prow = eye (n) (perm, :);
%! assert (A(perm, :), Prow * A);
%! invperm(perm) = 1:n;
%! assert (Prow \ A, A(invperm, :));
%! assert (Prow' * A, A(invperm, :));

## column permutation
%!test
%! n = 7;
%! A = rand (n);
%! perm = randperm (n);
%! Pcol = eye (n) (:, perm);
%! assert (A(:, perm), A * Pcol);
%! invperm(perm) = 1:n;
%! assert (A / Pcol, A(:, invperm));
%! assert (A * Pcol.', A(:, invperm));

## fall back to a matrix in addition
%!test
%! n = 4;
%! P1 = eye (n) (:, randperm (n));
%! A = zeros (n) + P1;
%! assert (sum (A), full (ones (1, n)));
%! assert (sum (A, 2), full (ones (n, 1)));

## preserve dense matrix structure
%!test
%! n = 7;
%! Pc = eye (n) (:, randperm (n));
%! Pr = eye (n) (randperm (n), :);
%! assert (typeinfo (rand (n) * Pc), "matrix");
%! assert (typeinfo (Pr * rand (n)), "matrix");

## preserve sparse matrix structure
%!test
%! n = 7;
%! Pc = eye (n) (:, randperm (n));
%! Ac = sprand (n-3, n, .5) + I () * sprand (n-3, n, .5);
%! Pr = eye (n) (randperm (n), :);
%! Ar = sprand (n, n+2, .5);
%! assert (typeinfo (Ac * Pc), "sparse complex matrix");
%! assert (full (Ac * Pc), full (Ac) * Pc);
%! assert (full (Ac / Pc), full (Ac) / Pc);
%! assert (typeinfo (Pr * Ar), "sparse matrix");
%! assert (full (Pr * Ar), Pr * full (Ar));
%! assert (full (Pr \ Ar), Pr \ full (Ar));

## structure rules for 1x1 dense / scalar and 1x1 perm
%!test
%! n = 7;
%! P1 = eye (1) (:, [1]);
%! A1 = 1;
%! P = eye (n) (:, randperm (n));
%! A = rand (n-3, n);
%! assert (typeinfo (A * P1), "matrix");
%! assert (full (A * P1), full (A) * P1);
%! assert (typeinfo (P1 * A), "matrix");
%! assert (full (P1 * A), P1 * full (A));
%! assert (typeinfo (A1 * P), "matrix");
%! assert (full (A1 * P), full (A1) * P);
%! assert (typeinfo (P * A1), "matrix");
%! assert (full (P * A1), P * full (A1));

## structure rules for 1x1 sparse and 1x1 perm
%!test
%! n = 7;
%! P1 = eye (1) (:, [1]);
%! A1 = sparse (1, 1, 2);
%! P = eye (n) (:, randperm (n));
%! A = sprand (n-3, n, .5);
%! assert (typeinfo (A * P1), "sparse matrix");
%! assert (full (A * P1), full (A) * P1);
%! assert (typeinfo (P1 * A), "sparse matrix");
%! assert (full (P1 * A), P1 * full (A));
%! assert (typeinfo (A1 * P), "sparse matrix");
%! assert (full (A1 * P), full (A1) * P);
%! assert (typeinfo (P * A1), "sparse matrix");
%! assert (full (P * A1), P * full (A1));

## permuting a matrix with exceptional values does not introduce new ones.
%!test
%! n = 5;
%! pc = randperm (n);
%! Pc = eye (n) (:, pc);
%! pr = randperm (n);
%! Pr = eye (n) (pr, :);
%! A = rand (n);
%! A(n, n-2) = NaN;
%! A(3, 1) = Inf;
%! assert (Pr * A * Pc, A(pr, pc));

## conversion to sparse form
%!test
%! n = 7;
%! P = eye (n) (:, randperm (n));
%! sP = sparse (P);
%! assert (full (sP), full (P));
%! assert (size (find (sP), 1), n);
%! [I, J, V] = find (sP);
%! assert (all (V == 1));

########################################
## Diagonal matrices

## square row scaling
%!test
%! m = 7;
%! n = 11;
%! A = rand (m, n);
%! scalefact = rand (m, 1);
%! Dr = diag (scalefact);
%! assert (Dr * A, repmat (scalefact, 1, n) .* A);
%! assert (Dr \ A, A ./ repmat (scalefact, 1, n));
%! scalefact(m-1) = Inf;
%! Dr(m-1, m-1) = 0;
%! assert (Dr \ A, A ./ repmat (scalefact, 1, n));

## square column scaling
%!test
%! m = 13;
%! n = 11;
%! A = rand (m, n);
%! scalefact = rand (1, n);
%! Dc = diag (scalefact);
%! assert (A * Dc, repmat (scalefact, m, 1) .* A);
%! assert (A / Dc, A ./ repmat (scalefact, m, 1));
%! scalefact(n-1) = Inf;
%! Dc(n-1, n-1) = 0;
%! assert (A / Dc, A ./ repmat (scalefact, m, 1));

## arithmetic
%!test
%! m = 9;
%! n = 7;
%! mn = min (m, n);
%! d1 = rand (mn, 1) + I () * rand (mn, 1);
%! D1 = diag (d1, m, n);
%! d2 = rand (mn, 1);
%! D2 = diag (d2, m, n);
%! D1D2 = D1 + D2;
%! assert (typeinfo (D1D2), "complex diagonal matrix");
%! assert (diag (D1D2), d1 + d2);
%! D1D2 = D2.' * D1;
%! assert (typeinfo (D1D2), "complex diagonal matrix");
%! assert (diag (D1D2), d1 .* d2);

## slicing
## preserving diagonal matrix type is not possible if indices are
## general matrix objects.
%!test
%! m = 13;
%! n = 6;
%! mn = min (m, n);
%! d = rand (mn, 1);
%! D = diag (d, m, n);
%! Dslice = D (1:(m-3), 1:(n-2));
%! if (optimize_range ())
%!   assert (typeinfo (Dslice), "diagonal matrix");
%! else
%!   assert (typeinfo (Dslice), "matrix");
%! endif

## preserve dense matrix structure when scaling
%!assert (typeinfo (rand (8) * (3 * eye (8))), "matrix")
%!assert (typeinfo ((3 * eye (8)) * rand (8)), "matrix")

## preserve sparse matrix structure when scaling
%!assert (typeinfo (sprand (8, 8, .5) * (3 * eye (8))), "sparse matrix")
%!assert (typeinfo (sprand (8, 8, .5) * (3 * eye (8))'), "sparse matrix")
%!assert (typeinfo (((3 + 2 * I ()) * eye (8)) * sprand (8, 8, .5)), "sparse complex matrix")
%!assert (typeinfo (((3 + 2 * I ()) * eye (8))' * sprand (8, 8, .5)), "sparse complex matrix")
%!assert (typeinfo (sprand (8, 8, .5) * ((3 + 2 * I ()) * eye (8)).'), "sparse complex matrix")

## scaling a matrix with exceptional values does not introduce new ones.
%!test
%! n = 6;
%! dr = rand (n, 1);
%! Dr = diag (dr);
%! dc = rand (1, n);
%! Dc = diag (dc);
%! A = rand (n);
%! A(n, n-2) = NaN;
%! A(4, 1) = Inf;
%! assert (Dr * A * Dc, A .* kron (dr, dc), eps);

## sparse inverse row scaling with a zero factor
%!test
%! n = 8;
%! A = sprand (n, n, .5);
%! scalefact = rand (n, 1);
%! Dr = diag (scalefact);
%! scalefact(n-1) = Inf;
%! Dr(n-1, n-1) = 0;
%! assert (full (Dr \ A), full (A) ./ repmat (scalefact, 1, n));

## narrow sparse inverse row scaling
%!test
%! n = 8;
%! A = sprand (n, n, .5);
%! scalefact = rand (n-2, 1);
%! Dr = diag (scalefact, n, n-2);
%! assert (full (Dr \ A), Dr \ full (A));

## sparse inverse column scaling with a zero factor
%!test
%! n = 11;
%! A = sprand (n, n, .5);
%! scalefact = rand (1, n);
%! Dc = diag (scalefact);
%! scalefact(n-1) = Inf;
%! Dc(n-1, n-1) = 0;
%! assert (full (A / Dc), full (A) / Dc);

## short sparse inverse column scaling
%!test
%! n = 7;
%! A = sprand (n, n, .5);
%! scalefact = rand (1, n-2) + I () * rand (1, n-2);
%! Dc = diag (scalefact, n-2, n);
%! assert (full (A / Dc), full (A) / Dc);

## adding sparse and diagonal stays sparse
%!test
%! n = 9;
%! A = sprand (n, n, .5);
%! D = 2 * eye (n);
%! assert (typeinfo (A + D), "sparse matrix");
%! assert (typeinfo (A - D), "sparse matrix");
%! D = D * I () + D;
%! assert (typeinfo (A - D), "sparse complex matrix");
%! A = A * I () + A;
%! assert (typeinfo (D - A), "sparse complex matrix");

## adding sparse and diagonal stays sparse
%!test
%! n = 9;
%! A = sprand (n, n, .5);
%! D = 2 * eye (n);
%! assert (full (A + D), full (A) + D);
%! assert (full (A - D), full (A) - D);
%! D = D * I () + D;
%! assert (full (D + A), D + full (A));
%! A = A * I () + A;
%! A(6, 4) = nan ();
%! assert (full (D - A), D - full (A));

## inverse preserves diagonal structure even for singular matrices (bug #46103)
## but set all the diagonal elements to Inf (bug #56232)
%!test
%! x = diag (1:3);
%! assert (inv (x), diag ([1 1/2 1/3]));
%!warning <matrix singular> A = inv (diag (0:2));
%! assert (A, diag ([Inf Inf Inf]));

## assignment to diagonal elements preserves diagonal structure (bug #36932)
%!test
%! x = diag (1:3);
%! x(1,1) = -1;
%! assert (typeinfo (x), "diagonal matrix");
%! x(3,3) = -1;
%! assert (typeinfo (x), "diagonal matrix");

%!test
%! x = diag (1:3);
%! x(1) = -1;
%! assert (typeinfo (x), "diagonal matrix");
%! x(9) = -1;
%! assert (typeinfo (x), "diagonal matrix");