view scripts/specfun/nchoosek.m @ 19059:83b88e20e9c1

nchoosek.m: Overhaul function. * nchoosek.m: Update docstring. Use same variable names in function as in documentation for clarity. Improve input validation. Don't manually clear variables at end of function which will go out of scope anyways and the memory reclaimed. Update built-in self tests.
author Rik <rik@octave.org>
date Fri, 29 Aug 2014 16:30:11 -0700
parents 1514f5337781
children 4197fc428c7d
line wrap: on
line source

## Copyright (C) 2001-2013 Rolf Fabian and Paul Kienzle
## Copyright (C) 2008 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{c} =} nchoosek (@var{n}, @var{k})
## @deftypefnx {Function File} {@var{c} =} nchoosek (@var{set}, @var{k})
##
## Compute the binomial coefficient of @var{n} or list all possible
## combinations of a @var{set} of items.
##
## If @var{n} is a scalar then calculate the binomial coefficient
## of @var{n} and @var{k} which is defined as
## @tex
## $$
##  {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
##                = {n! \over k! (n-k)!}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##  /   \
##  | n |    n (n-1) (n-2) @dots{} (n-k+1)       n!
##  |   |  = ------------------------- =  ---------
##  | k |               k!                k! (n-k)!
##  \   /
## @end group
## @end example
##
## @end ifnottex
## @noindent
## This is the number of combinations of @var{n} items taken in groups of
## size @var{k}.
##
## If the first argument is a vector, @var{set}, then generate all
## combinations of the elements of @var{set}, taken @var{k} at a time, with
## one row per combination.  The result @var{c} has @var{k} columns and
## @w{@code{nchoosek (length (@var{set}), @var{k})}} rows.
##
## For example:
##
## How many ways can three items be grouped into pairs?
##
## @example
## @group
## nchoosek (3, 2)
##    @result{} 3
## @end group
## @end example
##
## What are the possible pairs?
##
## @example
## @group
## nchoosek (1:3, 2)
##    @result{}  1   2
##        1   3
##        2   3
## @end group
## @end example
##
## Programming Note: When calculating the binomial coefficient @code{nchoosek}
## works only for non-negative, integer arguments.  Use @code{bincoeff} for
## non-integer and negative scalar arguments, or for computing many binomial
## coefficients at once with vector inputs for @var{n} or @var{k}.
##
## @seealso{bincoeff, perms}
## @end deftypefn

## Author: Rolf Fabian  <fabian@tu-cottbus.de>
## Author: Paul Kienzle <pkienzle@users.sf.net>
## Author: Jaroslav Hajek

function C = nchoosek (v, k)

  if (nargin != 2
      || ! (isreal (k) && isscalar (k))
      || ! (isnumeric (v) && isvector (v)))
    print_usage ();
  endif
  if (k < 0 || k != fix (k))
    error ("nchoosek: K must be an integer >= 0");
  elseif (isscalar (v) && (iscomplex (v) || v < k || v < 0 || v != fix (v)))
    error ("nchoosek: N must be a non-negative integer >= K");
  endif

  n = length (v);

  if (n == 1)
    ## Improve precision at next step.
    k = min (k, v-k);
    C = round (prod ((v-k+1:v)./(1:k)));
    if (C*2*k*eps >= 0.5)
      warning ("nchoosek: possible loss of precision");
    endif
  elseif (k == 0)
    C = zeros (1,0);
  elseif (k == 1)
    C = v(:);
  elseif (k == n)
    C = v(:).';
  elseif (k > n)
    C = zeros (0, k, class (v));
  elseif (k == 2)
    ## Can do it without transpose.
    x = repelems (v(1:n-1), [1:n-1; n-1:-1:1]).';
    y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:});
    C = [x, y];
  elseif (k < n)
    v = v(:).';
    C = v(k:n);
    l = 1:n-k+1;
    for j = 2:k
      c = columns (C);
      cA = cellslices (C, l, c*ones (1, n-k+1), 2);
      l = c-l+1;
      b = repelems (v(k-j+1:n-j+1), [1:n-k+1; l]);
      C = [b; cA{:}];
      l = cumsum (l);
      l = [1, 1 + l(1:n-k)];
    endfor
    C = C.';
  endif

endfunction


%!assert (nchoosek (80,10), bincoeff (80,10))
%!assert (nchoosek (1:5,3), [1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])
%!assert (size (nchoosek (1:5,0)), [1 0])

%% Test input validation
%!error nchoosek ()
%!error nchoosek (1)
%!error nchoosek (1,2,3)

%!error nchoosek (100, 2i)
%!error nchoosek (100, [2 3])
%!error nchoosek ("100", 45)
%!error nchoosek (100*ones (2, 2), 45)
%!error <K must be an integer .= 0> nchoosek (100, -45)
%!error <K must be an integer .= 0> nchoosek (100, 45.5)
%!error <N must be a non-negative integer .= K> nchoosek (100i, 2)
%!error <N must be a non-negative integer .= K> nchoosek (100, 145)
%!error <N must be a non-negative integer .= K> nchoosek (-100, 45)
%!error <N must be a non-negative integer .= K> nchoosek (100.5, 45)
%!warning <possible loss of precision> nchoosek (100, 45);