view liboctave/array/MatrixType.cc @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents db687716fed6
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 2006-2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cinttypes>
#include <vector>

#include "MatrixType.h"
#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"
#include "dSparse.h"
#include "CSparse.h"
#include "oct-spparms.h"
#include "oct-locbuf.h"

static void
warn_cached (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "using cached matrix type");
}

static void
warn_invalid (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "invalid matrix type");
}

static void
warn_calculating_sparse_type (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "calculating sparse matrix type");
}

// FIXME: There is a large code duplication here

MatrixType::MatrixType (void)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0),
    lower_band (0), dense (false), full (false), nperm (0), perm (nullptr) { }

MatrixType::MatrixType (const MatrixType& a)
  : typ (a.typ), sp_bandden (a.sp_bandden), bandden (a.bandden),
    upper_band (a.upper_band), lower_band (a.lower_band),
    dense (a.dense), full (a.full), nperm (a.nperm), perm (nullptr)
{
  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = a.perm[i];
    }
}

template <typename T>
MatrixType::matrix_type
matrix_real_probe (const MArray<T>& a)
{
  MatrixType::matrix_type typ;
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();

  const T zero = 0;

  if (ncols == nrows)
    {
      bool upper = true;
      bool lower = true;
      bool hermitian = true;

      // do the checks for lower/upper/hermitian all in one pass.
      OCTAVE_LOCAL_BUFFER (T, diag, ncols);

      for (octave_idx_type j = 0;
           j < ncols && upper; j++)
        {
          T d = a.elem (j,j);
          upper = upper && (d != zero);
          lower = lower && (d != zero);
          hermitian = hermitian && (d > zero);
          diag[j] = d;
        }

      for (octave_idx_type j = 0;
           j < ncols && (upper || lower || hermitian); j++)
        {
          for (octave_idx_type i = 0; i < j; i++)
            {
              double aij = a.elem (i,j);
              double aji = a.elem (j,i);
              lower = lower && (aij == zero);
              upper = upper && (aji == zero);
              hermitian = hermitian && (aij == aji
                                        && aij*aij < diag[i]*diag[j]);
            }
        }

      if (upper)
        typ = MatrixType::Upper;
      else if (lower)
        typ = MatrixType::Lower;
      else if (hermitian)
        typ = MatrixType::Hermitian;
      else
        typ = MatrixType::Full;
    }
  else
    typ = MatrixType::Rectangular;

  return typ;
}

template <typename T>
MatrixType::matrix_type
matrix_complex_probe (const MArray<std::complex<T>>& a)
{
  MatrixType::matrix_type typ = MatrixType::Unknown;
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();

  const T zero = 0;
  // get the real type

  if (ncols == nrows)
    {
      bool upper = true;
      bool lower = true;
      bool hermitian = true;

      // do the checks for lower/upper/hermitian all in one pass.
      OCTAVE_LOCAL_BUFFER (T, diag, ncols);

      for (octave_idx_type j = 0;
           j < ncols && upper; j++)
        {
          std::complex<T> d = a.elem (j,j);
          upper = upper && (d != zero);
          lower = lower && (d != zero);
          hermitian = hermitian && (d.real () > zero && d.imag () == zero);
          diag[j] = d.real ();
        }

      for (octave_idx_type j = 0;
           j < ncols && (upper || lower || hermitian); j++)
        {
          for (octave_idx_type i = 0; i < j; i++)
            {
              std::complex<T> aij = a.elem (i,j);
              std::complex<T> aji = a.elem (j,i);
              lower = lower && (aij == zero);
              upper = upper && (aji == zero);
              hermitian = hermitian && (aij == octave::math::conj (aji)
                                        && std::norm (aij) < diag[i]*diag[j]);
            }
        }

      if (upper)
        typ = MatrixType::Upper;
      else if (lower)
        typ = MatrixType::Lower;
      else if (hermitian)
        typ = MatrixType::Hermitian;
      else
        typ = MatrixType::Full;
    }
  else
    typ = MatrixType::Rectangular;

  return typ;
}

MatrixType::MatrixType (const Matrix& a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (nullptr)
{
  typ = matrix_real_probe (a);
}

MatrixType::MatrixType (const ComplexMatrix& a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (nullptr)
{
  typ = matrix_complex_probe (a);
}

MatrixType::MatrixType (const FloatMatrix& a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (nullptr)
{
  typ = matrix_real_probe (a);
}

MatrixType::MatrixType (const FloatComplexMatrix& a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (nullptr)
{
  typ = matrix_complex_probe (a);
}


template <typename T>
MatrixType::MatrixType (const MSparse<T>& a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (false), nperm (0), perm (nullptr)
{
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();
  octave_idx_type nm = (ncols < nrows ? ncols : nrows);
  octave_idx_type nnz = a.nnz ();

  if (octave_sparse_params::get_key ("spumoni") != 0.)
    warn_calculating_sparse_type ();

  sp_bandden = octave_sparse_params::get_bandden ();
  bool maybe_hermitian = false;
  typ = MatrixType::Full;

  if (nnz == nm)
    {
      matrix_type tmp_typ = MatrixType::Diagonal;
      octave_idx_type i;
      // Maybe the matrix is diagonal
      for (i = 0; i < nm; i++)
        {
          if (a.cidx (i+1) != a.cidx (i) + 1)
            {
              tmp_typ = MatrixType::Full;
              break;
            }
          if (a.ridx (i) != i)
            {
              tmp_typ = MatrixType::Permuted_Diagonal;
              break;
            }
        }

      if (tmp_typ == MatrixType::Permuted_Diagonal)
        {
          std::vector<bool> found (nrows);

          for (octave_idx_type j = 0; j < i; j++)
            found[j] = true;
          for (octave_idx_type j = i; j < nrows; j++)
            found[j] = false;

          for (octave_idx_type j = i; j < nm; j++)
            {
              if ((a.cidx (j+1) > a.cidx (j) + 1)
                  || ((a.cidx (j+1) == a.cidx (j) + 1) && found[a.ridx (j)]))
                {
                  tmp_typ = MatrixType::Full;
                  break;
                }
              found[a.ridx (j)] = true;
            }
        }
      typ = tmp_typ;
    }

  if (typ == MatrixType::Full)
    {
      // Search for banded, upper and lower triangular matrices
      bool singular = false;
      upper_band = 0;
      lower_band = 0;
      for (octave_idx_type j = 0; j < ncols; j++)
        {
          bool zero_on_diagonal = false;
          if (j < nrows)
            {
              zero_on_diagonal = true;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                if (a.ridx (i) == j)
                  {
                    zero_on_diagonal = false;
                    break;
                  }
            }

          if (zero_on_diagonal)
            {
              singular = true;
              break;
            }

          if (a.cidx (j+1) != a.cidx (j))
            {
              octave_idx_type ru = a.ridx (a.cidx (j));
              octave_idx_type rl = a.ridx (a.cidx (j+1)-1);

              if (j - ru > upper_band)
                upper_band = j - ru;

              if (rl - j > lower_band)
                lower_band = rl - j;
            }
        }

      if (! singular)
        {
          bandden = double (nnz) /
                    (double (ncols) * (double (lower_band) +
                                       double (upper_band)) -
                     0.5 * double (upper_band + 1) * double (upper_band) -
                     0.5 * double (lower_band + 1) * double (lower_band));

          if (nrows == ncols && sp_bandden != 1. && bandden > sp_bandden)
            {
              if (upper_band == 1 && lower_band == 1)
                typ = MatrixType::Tridiagonal;
              else
                typ = MatrixType::Banded;

              octave_idx_type nnz_in_band
                = ((upper_band + lower_band + 1) * nrows
                   - (1 + upper_band) * upper_band / 2
                   - (1 + lower_band) * lower_band / 2);

              if (nnz_in_band == nnz)
                dense = true;
              else
                dense = false;
            }

          // If a matrix is Banded but also Upper/Lower, set to the latter.
          if (upper_band == 0)
            typ = MatrixType::Lower;
          else if (lower_band == 0)
            typ = MatrixType::Upper;

          if (upper_band == lower_band && nrows == ncols)
            maybe_hermitian = true;
        }

      if (typ == MatrixType::Full)
        {
          // Search for a permuted triangular matrix, and test if
          // permutation is singular

          // FIXME: Perhaps this should be based on a dmperm algorithm?
          bool found = false;

          nperm = ncols;
          perm = new octave_idx_type [ncols];

          for (octave_idx_type i = 0; i < ncols; i++)
            perm[i] = -1;

          for (octave_idx_type i = 0; i < nm; i++)
            {
              found = false;

              for (octave_idx_type j = 0; j < ncols; j++)
                {
                  if ((a.cidx (j+1) - a.cidx (j)) > 0
                      && (a.ridx (a.cidx (j+1)-1) == i))
                    {
                      perm[i] = j;
                      found = true;
                      break;
                    }
                }

              if (! found)
                break;
            }

          if (found)
            {
              typ = MatrixType::Permuted_Upper;
              if (ncols > nrows)
                {
                  octave_idx_type k = nrows;
                  for (octave_idx_type i = 0; i < ncols; i++)
                    if (perm[i] == -1)
                      perm[i] = k++;
                }
            }
          else if (a.cidx (nm) == a.cidx (ncols))
            {
              nperm = nrows;
              delete [] perm;
              perm = new octave_idx_type [nrows];
              OCTAVE_LOCAL_BUFFER (octave_idx_type, tmp, nrows);

              for (octave_idx_type i = 0; i < nrows; i++)
                {
                  perm[i] = -1;
                  tmp[i] = -1;
                }

              for (octave_idx_type j = 0; j < ncols; j++)
                for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                  perm[a.ridx (i)] = j;

              found = true;
              for (octave_idx_type i = 0; i < nm; i++)
                if (perm[i] == -1)
                  {
                    found = false;
                    break;
                  }
                else
                  {
                    tmp[perm[i]] = 1;
                  }

              if (found)
                {
                  octave_idx_type k = ncols;
                  for (octave_idx_type i = 0; i < nrows; i++)
                    {
                      if (tmp[i] == -1)
                        {
                          if (k < nrows)
                            {
                              perm[k++] = i;
                            }
                          else
                            {
                              found = false;
                              break;
                            }
                        }
                    }
                }

              if (found)
                typ = MatrixType::Permuted_Lower;
              else
                {
                  delete [] perm;
                  nperm = 0;
                }
            }
          else
            {
              delete [] perm;
              nperm = 0;
            }
        }

      // FIXME: Disable lower under-determined and upper over-determined
      //        problems as being detected, and force to treat as singular
      //        as this seems to cause issues.
      if (((typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
           && nrows > ncols)
          || ((typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
              && nrows < ncols))
        {
          if (typ == MatrixType::Permuted_Upper
              || typ == MatrixType::Permuted_Lower)
            delete [] perm;
          nperm = 0;
          typ = MatrixType::Rectangular;
        }

      if (typ == MatrixType::Full && ncols != nrows)
        typ = MatrixType::Rectangular;

      if (maybe_hermitian && (typ == MatrixType::Full
                              || typ == MatrixType::Tridiagonal
                              || typ == MatrixType::Banded))
        {
          bool is_herm = true;

          // first, check whether the diagonal is positive & extract it
          ColumnVector diag (ncols);

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            {
              is_herm = false;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                {
                  if (a.ridx (i) == j)
                    {
                      T d = a.data (i);
                      is_herm = (std::real (d) > 0.0
                                 && std::imag (d) == 0.0);
                      diag(j) = std::real (d);
                      break;
                    }
                }
            }

          // next, check symmetry and 2x2 positiveness

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            for (octave_idx_type i = a.cidx (j); is_herm && i < a.cidx (j+1); i++)
              {
                octave_idx_type k = a.ridx (i);
                is_herm = k == j;
                if (is_herm)
                  continue;

                T d = a.data (i);
                if (std::norm (d) < diag(j)*diag(k))
                  {
                    d = octave::math::conj (d);
                    for (octave_idx_type l = a.cidx (k); l < a.cidx (k+1); l++)
                      {
                        if (a.ridx (l) == j)
                          {
                            is_herm = a.data (l) == d;
                            break;
                          }
                      }
                  }
              }

          if (is_herm)
            {
              if (typ == MatrixType::Full)
                typ = MatrixType::Hermitian;
              else if (typ == MatrixType::Banded)
                typ = MatrixType::Banded_Hermitian;
              else
                typ = MatrixType::Tridiagonal_Hermitian;
            }
        }
    }
}


MatrixType::MatrixType (const matrix_type t, bool _full)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0), lower_band (0),
    dense (false), full (_full), nperm (0), perm (nullptr)
{
  if (t == MatrixType::Unknown || t == MatrixType::Full
      || t == MatrixType::Diagonal || t == MatrixType::Permuted_Diagonal
      || t == MatrixType::Upper || t == MatrixType::Lower
      || t == MatrixType::Tridiagonal || t == MatrixType::Tridiagonal_Hermitian
      || t == MatrixType::Rectangular)
    typ = t;
  else
    warn_invalid ();
}

MatrixType::MatrixType (const matrix_type t, const octave_idx_type np,
                        const octave_idx_type *p, bool _full)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0), lower_band (0),
    dense (false), full (_full), nperm (0), perm (nullptr)
{
  if ((t == MatrixType::Permuted_Upper || t == MatrixType::Permuted_Lower)
      && np > 0 && p != nullptr)
    {
      typ = t;
      nperm = np;
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = p[i];
    }
  else
    warn_invalid ();
}

MatrixType::MatrixType (const matrix_type t, const octave_idx_type ku,
                        const octave_idx_type kl, bool _full)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0), lower_band (0),
    dense (false), full (_full), nperm (0), perm (nullptr)
{
  if (t == MatrixType::Banded || t == MatrixType::Banded_Hermitian)
    {
      typ = t;
      upper_band = ku;
      lower_band = kl;
    }
  else
    warn_invalid ();
}

MatrixType::~MatrixType (void)
{
  if (nperm != 0)
    {
      delete [] perm;
    }
}

MatrixType&
MatrixType::operator = (const MatrixType& a)
{
  if (this != &a)
    {
      typ = a.typ;
      sp_bandden = a.sp_bandden;
      bandden = a.bandden;
      upper_band = a.upper_band;
      lower_band = a.lower_band;
      dense = a.dense;
      full = a.full;

      if (nperm)
        {
          delete[] perm;
        }

      if (a.nperm != 0)
        {
          perm = new octave_idx_type [a.nperm];
          for (octave_idx_type i = 0; i < a.nperm; i++)
            perm[i] = a.perm[i];
        }

      nperm = a.nperm;
    }

  return *this;
}

int
MatrixType::type (bool quiet)
{
  if (typ != MatrixType::Unknown
      && (full || sp_bandden == octave_sparse_params::get_bandden ()))
    {
      if (! quiet && octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  if (typ != MatrixType::Unknown
      && octave_sparse_params::get_key ("spumoni") != 0.)
    (*current_liboctave_warning_with_id_handler)
      ("Octave:matrix-type-info", "invalidating matrix type");

  typ = MatrixType::Unknown;

  return typ;
}

int
MatrixType::type (const SparseMatrix& a)
{
  if (typ != MatrixType::Unknown
      && (full || sp_bandden == octave_sparse_params::get_bandden ()))
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  sp_bandden = tmp_typ.sp_bandden;
  bandden = tmp_typ.bandden;
  upper_band = tmp_typ.upper_band;
  lower_band = tmp_typ.lower_band;
  dense = tmp_typ.dense;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const SparseComplexMatrix& a)
{
  if (typ != MatrixType::Unknown
      && (full || sp_bandden == octave_sparse_params::get_bandden ()))
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  sp_bandden = tmp_typ.sp_bandden;
  bandden = tmp_typ.bandden;
  upper_band = tmp_typ.upper_band;
  lower_band = tmp_typ.lower_band;
  dense = tmp_typ.dense;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const Matrix& a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const ComplexMatrix& a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const FloatMatrix& a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const FloatComplexMatrix& a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

void
MatrixType::info () const
{
  if (octave_sparse_params::get_key ("spumoni") != 0.)
    {
      if (typ == MatrixType::Unknown)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "unknown matrix type");
      else if (typ == MatrixType::Diagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "diagonal sparse matrix");
      else if (typ == MatrixType::Permuted_Diagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted diagonal sparse matrix");
      else if (typ == MatrixType::Upper)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "upper triangular matrix");
      else if (typ == MatrixType::Lower)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "lower triangular matrix");
      else if (typ == MatrixType::Permuted_Upper)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted upper triangular matrix");
      else if (typ == MatrixType::Permuted_Lower)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted lower triangular Matrix");
      else if (typ == MatrixType::Banded)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "banded sparse matrix %" OCTAVE_IDX_TYPE_FORMAT "-1-"
           "%" OCTAVE_IDX_TYPE_FORMAT " (density %f)",
           lower_band, upper_band, bandden);
      else if (typ == MatrixType::Banded_Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "banded hermitian/symmetric sparse matrix %" OCTAVE_IDX_TYPE_FORMAT
           "-1-%" OCTAVE_IDX_TYPE_FORMAT " (density %f)",
           lower_band, upper_band, bandden);
      else if (typ == MatrixType::Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "hermitian/symmetric matrix");
      else if (typ == MatrixType::Tridiagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "tridiagonal sparse matrix");
      else if (typ == MatrixType::Tridiagonal_Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "hermitian/symmetric tridiagonal sparse matrix");
      else if (typ == MatrixType::Rectangular)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "rectangular/singular matrix");
      else if (typ == MatrixType::Full)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "full matrix");
    }
}

void
MatrixType::mark_as_symmetric (void)
{
  if (typ == MatrixType::Tridiagonal
      || typ == MatrixType::Tridiagonal_Hermitian)
    typ = MatrixType::Tridiagonal_Hermitian;
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    typ = MatrixType::Banded_Hermitian;
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian
           || typ == MatrixType::Unknown)
    typ = MatrixType::Hermitian;
  else
    (*current_liboctave_error_handler)
      ("Can not mark current matrix type as symmetric");
}

void
MatrixType::mark_as_unsymmetric (void)
{
  if (typ == MatrixType::Tridiagonal
      || typ == MatrixType::Tridiagonal_Hermitian)
    typ = MatrixType::Tridiagonal;
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    typ = MatrixType::Banded;
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian
           || typ == MatrixType::Unknown)
    typ = MatrixType::Full;
}

void
MatrixType::mark_as_permuted (const octave_idx_type np,
                              const octave_idx_type *p)
{
  nperm = np;
  perm = new octave_idx_type [nperm];
  for (octave_idx_type i = 0; i < nperm; i++)
    perm[i] = p[i];

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    typ = MatrixType::Permuted_Diagonal;
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    typ = MatrixType::Permuted_Upper;
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    typ = MatrixType::Permuted_Lower;
  else
    (*current_liboctave_error_handler)
      ("Can not mark current matrix type as symmetric");
}

void
MatrixType::mark_as_unpermuted (void)
{
  if (nperm)
    {
      nperm = 0;
      delete [] perm;
    }

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    typ = MatrixType::Diagonal;
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    typ = MatrixType::Upper;
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    typ = MatrixType::Lower;
}

MatrixType
MatrixType::transpose (void) const
{
  MatrixType retval (*this);
  if (typ == MatrixType::Upper)
    retval.typ = MatrixType::Lower;
  else if (typ == MatrixType::Permuted_Upper)
    retval.typ = MatrixType::Permuted_Lower;
  else if (typ == MatrixType::Lower)
    retval.typ = MatrixType::Upper;
  else if (typ == MatrixType::Permuted_Lower)
    retval.typ = MatrixType::Permuted_Upper;
  else if (typ == MatrixType::Banded)
    {
      retval.upper_band = lower_band;
      retval.lower_band = upper_band;
    }

  return retval;
}

// Instantiate MatrixType template constructors that we need.

template MatrixType::MatrixType (const MSparse<double>&);
template MatrixType::MatrixType (const MSparse<Complex>&);