view libinterp/dldfcn/__magick_read__.cc @ 17281:bc924baa2c4e

doc: Add new @qcode macro for code samples which are quoted. Macro handles options ("on") or properties ("position") more elegantly than @code{"text"}. * doc/interpreter/macros.texi: Add new @qcode macro. * doc/interpreter/tips.txi: Add documentation about @qcode macro. * doc/interpreter/basics.txi, doc/interpreter/container.txi, doc/interpreter/emacs.txi, doc/interpreter/errors.txi, doc/interpreter/eval.txi, doc/interpreter/expr.txi, doc/interpreter/external.txi, doc/interpreter/func.txi, doc/interpreter/grammar.txi, doc/interpreter/image.txi, doc/interpreter/install.txi, doc/interpreter/interp.txi, doc/interpreter/io.txi, doc/interpreter/matrix.txi, doc/interpreter/numbers.txi, doc/interpreter/oop.txi, doc/interpreter/package.txi, doc/interpreter/plot.txi, doc/interpreter/quad.txi, doc/interpreter/sparse.txi, doc/interpreter/strings.txi, doc/interpreter/system.txi, doc/interpreter/vectorize.txi, libinterp/corefcn/balance.cc, libinterp/corefcn/bitfcns.cc, libinterp/corefcn/cellfun.cc, libinterp/corefcn/conv2.cc, libinterp/corefcn/data.cc, libinterp/corefcn/debug.cc, libinterp/corefcn/defaults.cc, libinterp/corefcn/dirfns.cc, libinterp/corefcn/dlmread.cc, libinterp/corefcn/error.cc, libinterp/corefcn/file-io.cc, libinterp/corefcn/find.cc, libinterp/corefcn/gammainc.cc, libinterp/corefcn/graphics.cc, libinterp/corefcn/help.cc, libinterp/corefcn/hex2num.cc, libinterp/corefcn/input.cc, libinterp/corefcn/load-path.cc, libinterp/corefcn/load-save.cc, libinterp/corefcn/ls-oct-ascii.cc, libinterp/corefcn/lu.cc, libinterp/corefcn/luinc.cc, libinterp/corefcn/matrix_type.cc, libinterp/corefcn/oct-hist.cc, libinterp/corefcn/pager.cc, libinterp/corefcn/pr-output.cc, libinterp/corefcn/pt-jit.cc, libinterp/corefcn/qz.cc, libinterp/corefcn/rand.cc, libinterp/corefcn/regexp.cc, libinterp/corefcn/schur.cc, libinterp/corefcn/sighandlers.cc, libinterp/corefcn/sparse.cc, libinterp/corefcn/spparms.cc, libinterp/corefcn/str2double.cc, libinterp/corefcn/svd.cc, libinterp/corefcn/symtab.cc, libinterp/corefcn/syscalls.cc, libinterp/corefcn/toplev.cc, libinterp/corefcn/tril.cc, libinterp/corefcn/typecast.cc, libinterp/corefcn/utils.cc, libinterp/corefcn/variables.cc, libinterp/dldfcn/__init_fltk__.cc, libinterp/dldfcn/chol.cc, libinterp/dldfcn/colamd.cc, libinterp/dldfcn/fftw.cc, libinterp/dldfcn/qr.cc, libinterp/dldfcn/symbfact.cc, libinterp/octave-value/ov-base.cc, libinterp/octave-value/ov-fcn-handle.cc, libinterp/octave-value/ov-fcn-inline.cc, libinterp/octave-value/ov-java.cc, libinterp/octave-value/ov-range.cc, libinterp/octave-value/ov-struct.cc, libinterp/octave-value/ov-usr-fcn.cc, libinterp/parse-tree/oct-parse.in.yy, libinterp/parse-tree/pt-binop.cc, libinterp/parse-tree/pt-eval.cc, libinterp/parse-tree/pt-mat.cc, scripts/@ftp/ftp.m, scripts/deprecated/java_convert_matrix.m, scripts/deprecated/java_debug.m, scripts/deprecated/java_unsigned_conversion.m, scripts/deprecated/shell_cmd.m, scripts/general/dblquad.m, scripts/general/display.m, scripts/general/genvarname.m, scripts/general/idivide.m, scripts/general/interp1.m, scripts/general/interp2.m, scripts/general/interp3.m, scripts/general/interpn.m, scripts/general/isa.m, scripts/general/profexplore.m, scripts/general/profile.m, scripts/general/quadgk.m, scripts/general/randi.m, scripts/general/structfun.m, scripts/general/subsindex.m, scripts/general/triplequad.m, scripts/geometry/griddata.m, scripts/geometry/griddata3.m, scripts/geometry/griddatan.m, scripts/geometry/voronoi.m, scripts/help/help.m, scripts/help/lookfor.m, scripts/image/cmpermute.m, scripts/image/colormap.m, scripts/image/image.m, scripts/image/imagesc.m, scripts/image/imfinfo.m, scripts/image/imformats.m, scripts/image/imread.m, scripts/image/imshow.m, scripts/image/imwrite.m, scripts/image/ind2gray.m, scripts/image/lines.m, scripts/image/rgb2ind.m, scripts/image/spinmap.m, scripts/io/dlmwrite.m, scripts/io/strread.m, scripts/io/textread.m, scripts/io/textscan.m, scripts/java/javaclasspath.m, scripts/java/usejava.m, scripts/miscellaneous/bzip2.m, scripts/miscellaneous/computer.m, scripts/miscellaneous/copyfile.m, scripts/miscellaneous/debug.m, scripts/miscellaneous/dos.m, scripts/miscellaneous/edit.m, scripts/miscellaneous/gzip.m, scripts/miscellaneous/license.m, scripts/miscellaneous/mkoctfile.m, scripts/miscellaneous/movefile.m, scripts/miscellaneous/parseparams.m, scripts/miscellaneous/unix.m, scripts/optimization/fminbnd.m, scripts/optimization/fminsearch.m, scripts/optimization/fminunc.m, scripts/optimization/fsolve.m, scripts/optimization/fzero.m, scripts/optimization/glpk.m, scripts/optimization/lsqnonneg.m, scripts/optimization/optimset.m, scripts/optimization/pqpnonneg.m, scripts/pkg/pkg.m, scripts/plot/allchild.m, scripts/plot/ancestor.m, scripts/plot/area.m, scripts/plot/axis.m, scripts/plot/bar.m, scripts/plot/barh.m, scripts/plot/box.m, scripts/plot/caxis.m, scripts/plot/cla.m, scripts/plot/clabel.m, scripts/plot/clf.m, scripts/plot/close.m, scripts/plot/colorbar.m, scripts/plot/daspect.m, scripts/plot/ezmesh.m, scripts/plot/ezmeshc.m, scripts/plot/ezsurf.m, scripts/plot/ezsurfc.m, scripts/plot/findall.m, scripts/plot/findobj.m, scripts/plot/gcbo.m, scripts/plot/gcf.m, scripts/plot/gco.m, scripts/plot/grid.m, scripts/plot/guihandles.m, scripts/plot/hdl2struct.m, scripts/plot/hidden.m, scripts/plot/hold.m, scripts/plot/isonormals.m, scripts/plot/isosurface.m, scripts/plot/legend.m, scripts/plot/mesh.m, scripts/plot/meshc.m, scripts/plot/meshz.m, scripts/plot/newplot.m, scripts/plot/orient.m, scripts/plot/pareto.m, scripts/plot/patch.m, scripts/plot/pbaspect.m, scripts/plot/pcolor.m, scripts/plot/plot.m, scripts/plot/print.m, scripts/plot/private/__add_default_menu__.m, scripts/plot/quiver.m, scripts/plot/quiver3.m, scripts/plot/refreshdata.m, scripts/plot/saveas.m, scripts/plot/scatter.m, scripts/plot/scatter3.m, scripts/plot/shading.m, scripts/plot/shrinkfaces.m, scripts/plot/slice.m, scripts/plot/stem.m, scripts/plot/stem3.m, scripts/plot/struct2hdl.m, scripts/plot/subplot.m, scripts/plot/surf.m, scripts/plot/surfc.m, scripts/plot/surfl.m, scripts/plot/tetramesh.m, scripts/plot/uigetfile.m, scripts/plot/uimenu.m, scripts/plot/uiputfile.m, scripts/plot/waterfall.m, scripts/plot/whitebg.m, scripts/plot/xlim.m, scripts/plot/ylim.m, scripts/plot/zlim.m, scripts/polynomial/conv.m, scripts/polynomial/polyout.m, scripts/polynomial/splinefit.m, scripts/set/ismember.m, scripts/set/powerset.m, scripts/set/setdiff.m, scripts/set/union.m, scripts/set/unique.m, scripts/signal/detrend.m, scripts/signal/filter2.m, scripts/signal/freqz.m, scripts/signal/periodogram.m, scripts/signal/spectral_adf.m, scripts/signal/spectral_xdf.m, scripts/sparse/eigs.m, scripts/sparse/svds.m, scripts/specfun/legendre.m, scripts/special-matrix/gallery.m, scripts/statistics/base/mean.m, scripts/statistics/base/moment.m, scripts/statistics/tests/cor_test.m, scripts/statistics/tests/kolmogorov_smirnov_test.m, scripts/statistics/tests/kolmogorov_smirnov_test_2.m, scripts/statistics/tests/kruskal_wallis_test.m, scripts/statistics/tests/prop_test_2.m, scripts/statistics/tests/sign_test.m, scripts/statistics/tests/t_test.m, scripts/statistics/tests/t_test_2.m, scripts/statistics/tests/t_test_regression.m, scripts/statistics/tests/u_test.m, scripts/statistics/tests/var_test.m, scripts/statistics/tests/welch_test.m, scripts/statistics/tests/wilcoxon_test.m, scripts/statistics/tests/z_test.m, scripts/statistics/tests/z_test_2.m, scripts/strings/base2dec.m, scripts/strings/index.m, scripts/strings/isstrprop.m, scripts/strings/mat2str.m, scripts/strings/regexptranslate.m, scripts/strings/rindex.m, scripts/strings/str2num.m, scripts/strings/strcat.m, scripts/strings/strjust.m, scripts/strings/strmatch.m, scripts/strings/validatestring.m, scripts/testfun/demo.m, scripts/testfun/example.m, scripts/testfun/test.m, scripts/time/addtodate.m, scripts/time/asctime.m, scripts/time/datestr.m, scripts/time/datetick.m, scripts/time/weekday.m, scripts/ui/errordlg.m, scripts/ui/helpdlg.m, scripts/ui/inputdlg.m, scripts/ui/listdlg.m, scripts/ui/msgbox.m, scripts/ui/questdlg.m, scripts/ui/warndlg.m: Use new @qcode macro.
author Rik <rik@octave.org>
date Mon, 19 Aug 2013 20:46:38 -0700
parents d757c98636d8
children eb7e9a991ffb
line wrap: on
line source

/*

Copyright (C) 2013 Carnë Draug
Copyright (C) 2002-2012 Andy Adler
Copyright (C) 2008 Thomas L. Scofield
Copyright (C) 2010 David Grundberg

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cmath>

#include "file-stat.h"
#include "oct-env.h"
#include "oct-time.h"

#include "defun-dld.h"
#include "error.h"
#include "ov-struct.h"

#include "gripes.h"

#ifdef HAVE_MAGICK

#include <Magick++.h>
#include <clocale>

static std::map<std::string, octave_idx_type>
calculate_region (const octave_scalar_map& options)
{
  std::map<std::string, octave_idx_type> region;
  const Cell pixel_region = options.getfield ("region").cell_value ();

  // Subtract 1 to account for 0 indexing.
  const Range rows     = pixel_region (0).range_value ();
  const Range cols     = pixel_region (1).range_value ();
  region["row_start"]  = rows.base () -1;
  region["col_start"]  = cols.base () -1;
  region["row_end"]    = rows.max ()  -1;
  region["col_end"]    = cols.max ()  -1;

  // Length of the area to load into the Image Pixel Cache.  We use max and
  // min to account for cases where last element of range is the range limit.
  region["row_cache"] = region["row_end"] - region["row_start"] +1;
  region["col_cache"] = region["col_end"] - region["col_start"] +1;

  // How much we have to shift in the memory when doing the loops.
  region["row_shift"] = region["col_cache"] * rows.inc ();
  region["col_shift"] = region["col_cache"] *
                        (region["row_cache"] + rows.inc () -1) - cols.inc ();

  // The actual height and width of the output image
  region["row_out"] = rows.nelem ();
  region["col_out"] = cols.nelem ();

  return region;
}

template <class T>
static octave_value_list
read_indexed_images (std::vector<Magick::Image>& imvec,
                     const Array<octave_idx_type>& frameidx,
                     const octave_idx_type& nargout,
                     const octave_scalar_map& options)
{
  typedef typename T::element_type P;

  octave_value_list retval (3, Matrix ());

  std::map<std::string, octave_idx_type> region = calculate_region (options);
  const octave_idx_type nFrames = frameidx.length ();
  const octave_idx_type nRows = region["row_out"];
  const octave_idx_type nCols = region["col_out"];

  // imvec has all of the pages of a file, even the ones we are not
  // interested in. We will use the first image that we will be actually
  // reading to get information about the image.
  const octave_idx_type def_elem = frameidx(0);

  T img       = T (dim_vector (nRows, nCols, 1, nFrames));
  P* img_fvec = img.fortran_vec ();

  const octave_idx_type row_start  = region["row_start"];
  const octave_idx_type col_start  = region["col_start"];
  const octave_idx_type row_shift  = region["row_shift"];
  const octave_idx_type col_shift  = region["col_shift"];
  const octave_idx_type row_cache  = region["row_cache"];
  const octave_idx_type col_cache  = region["col_cache"];

  // When reading PixelPackets from the Image Pixel Cache, they come in
  // row major order. So we keep moving back and forth there so we can
  // write the image in column major order.
  octave_idx_type idx = 0;
  for (octave_idx_type frame = 0; frame < nFrames; frame++)
    {
      imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                             col_cache, row_cache);

      const Magick::IndexPacket *pix
        = imvec[frameidx(frame)].getConstIndexes ();

      for (octave_idx_type col = 0; col < nCols; col++)
        {
          for (octave_idx_type row = 0; row < nRows; row++)
            {
              img_fvec[idx++] = static_cast<P> (*pix);
              pix += row_shift;
            }
          pix -= col_shift;
        }
    }
  retval(0) = octave_value (img);

  // Do we need to get the colormap to interpret the image and alpha channel?
  if (nargout > 1)
    {
      const octave_idx_type mapsize = imvec[def_elem].colorMapSize ();
      Matrix cmap                   = Matrix (mapsize, 3);

      // In theory, it should be possible for each frame of an image to
      // have different colormaps but for Matlab compatibility, we only
      // return the colormap of the first frame.

      // only get alpha channel if it exists and was requested as output
      if (imvec[def_elem].matte () && nargout >= 3)
        {
          Matrix amap = Matrix (mapsize, 1);
          for (octave_idx_type i = 0; i < mapsize; i++)
            {
              const Magick::ColorRGB c = imvec[def_elem].colorMap (i);
              cmap(i,0) = c.red   ();
              cmap(i,1) = c.green ();
              cmap(i,2) = c.blue  ();
              amap(i,0) = c.alpha ();
            }

          NDArray alpha (dim_vector (nRows, nCols, 1, nFrames));
          const octave_idx_type nPixels = alpha.numel ();

          double* alpha_fvec = alpha.fortran_vec ();

          idx = 0;
          for (octave_idx_type pix = 0; pix < nPixels; pix++)
            {
              // GraphicsMagick stores the alpha values inverted, i.e.,
              // 1 for transparent and 0 for opaque so we fix that here.
              alpha_fvec[idx] = 1 - amap(img(idx), 0);
              idx++;
            }
          retval(2) = alpha;
        }

      else
        {
          for (octave_idx_type i = 0; i < mapsize; i++)
            {
              const Magick::ColorRGB c = imvec[def_elem].colorMap (i);
              cmap(i,0) = c.red   ();
              cmap(i,1) = c.green ();
              cmap(i,2) = c.blue  ();
            }
        }

      retval(1) = cmap;
    }

  return retval;
}

// This function is highly repetitive, a bunch of for loops that are
// very similar to account for different image types. They are different
// enough that trying to reduce the copy and paste would decrease its
// readability too much.
template <class T>
octave_value_list
read_images (std::vector<Magick::Image>& imvec,
             const Array<octave_idx_type>& frameidx,
             const octave_idx_type& nargout,
             const octave_scalar_map& options)
{
  typedef typename T::element_type P;

  octave_value_list retval (3, Matrix ());

  std::map<std::string, octave_idx_type> region = calculate_region (options);
  const octave_idx_type nFrames = frameidx.length ();
  const octave_idx_type nRows = region["row_out"];
  const octave_idx_type nCols = region["col_out"];
  T img;

  // imvec has all of the pages of a file, even the ones we are not
  // interested in. We will use the first image that we will be actually
  // reading to get information about the image.
  const octave_idx_type def_elem = frameidx(0);

  const octave_idx_type row_start  = region["row_start"];
  const octave_idx_type col_start  = region["col_start"];
  const octave_idx_type row_shift  = region["row_shift"];
  const octave_idx_type col_shift  = region["col_shift"];
  const octave_idx_type row_cache  = region["row_cache"];
  const octave_idx_type col_cache  = region["col_cache"];

  // GraphicsMagick (GM) keeps the image values in memory using whatever
  // QuantumDepth it was built with independently of the original image
  // bitdepth. Basically this means that if GM was built with quantum 16
  // all values are scaled in the uint16 range. If the original image
  // had an 8 bit depth, we need to rescale it for that range.
  // However, if the image had a bitdepth of 32, then we will be returning
  // a floating point image. In this case, the values need to be rescaled
  // for the range [0 1] (this is what Matlab has documented on the page
  // about image types but in some cases seems to be doing something else.
  // See bug #39249).
  // Finally, we must do the division ourselves (set a divisor) instead of
  // using quantumOperator for the cases where we will be returning floating
  // point and want things in the range [0 1]. This is the same reason why
  // the divisor is of type double.
  // uint64_t is used in expression because default 32-bit value overflows
  // when depth() is 32.
  // TODO in the next release of GraphicsMagick, MaxRGB should be replaced
  //      with QuantumRange since MaxRGB is already deprecated in ImageMagick.
  double divisor;
  if (imvec[def_elem].depth () == 32)
    divisor = std::numeric_limits<uint32_t>::max ();
  else
    divisor = MaxRGB / ((uint64_t (1) << imvec[def_elem].depth ()) - 1);

  // FIXME: this workaround should probably be fixed in GM by creating a
  //        new ImageType BilevelMatteType
  // Despite what GM documentation claims, opacity is not only on the types
  // with Matte on the name. It is possible that an image is completely
  // black (1 color), and have a second channel set for transparency (2nd
  // color). Its type will be bilevel since there is no BilevelMatte. The
  // only way to check for this seems to be by checking matte ().
  Magick::ImageType type = imvec[def_elem].type ();
  if (type == Magick::BilevelType && imvec[def_elem].matte ())
    type = Magick::GrayscaleMatteType;

  // FIXME: ImageType is the type being used to represent the image in memory
  // by GM. The real type may be different (see among others bug #36820). For
  // example, a png file where all channels are equal may report being
  // grayscale or even bilevel. But we must always return the real image in
  // file. In some cases, the original image attributes are stored in the
  // attributes but this is undocumented. This should be fixed in GM so that
  // a method such as original_type returns an actual Magick::ImageType
  if (imvec[0].magick () == "PNG")
    {
      // These values come from libpng, not GM:
      //      Grayscale         = 0
      //      Palette           = 2 + 1
      //      RGB               = 2
      //      RGB + Alpha       = 2 + 4
      //      Grayscale + Alpha = 4
      // We won't bother with case 3 (palette) since those should be
      // read by the function to read indexed images
      const std::string type_str = imvec[0].attribute ("PNG:IHDR.color-type-orig");
      if (type_str == "0")
        type = Magick::GrayscaleType;
      else if (type_str == "2")
        type = Magick::TrueColorType;
      else if (type_str == "6")
        type = Magick::TrueColorMatteType;
      else if (type_str == "4")
        type = Magick::GrayscaleMatteType;
      // Color types 0, 2, and 3 can also have alpha channel, conveyed
      // via the "tRNS" chunk.  For 0 and 2, it's limited to GIF-style
      // binary transparency, while 3 can have any level of alpha per
      // palette entry. We thus must check matte() to see if the image
      // really doesn't have an alpha channel.
      if (imvec[0].matte ())
        {
          if (type == Magick::GrayscaleType)
            type = Magick::GrayscaleMatteType;
          else if (type == Magick::TrueColorType)
            type = Magick::TrueColorMatteType;
        }
    }

  // If the alpha channel was not requested, treat images as if
  // it doesn't exist.
  if (nargout < 3)
    {
      switch (type)
        {
        case Magick::GrayscaleMatteType:
          type = Magick::GrayscaleType;
          break;

        case Magick::PaletteMatteType:
          type = Magick::PaletteType;
          break;

        case Magick::TrueColorMatteType:
          type = Magick::TrueColorType;
          break;

        case Magick::ColorSeparationMatteType:
          type = Magick::ColorSeparationType;
          break;

        default:
          // Do nothing other than silencing warnings about enumeration
          // values not being handled in switch.
          ;
        }
    }

  switch (type)
    {
    case Magick::BilevelType:           // Monochrome bi-level image
    case Magick::GrayscaleType:         // Grayscale image
      {
        img = T (dim_vector (nRows, nCols, 1, nFrames));
        P *img_fvec = img.fortran_vec ();

        octave_idx_type idx = 0;
        for (octave_idx_type frame = 0; frame < nFrames; frame++)
          {
            const Magick::PixelPacket *pix
              = imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                                       col_cache, row_cache);

            for (octave_idx_type col = 0; col < nCols; col++)
              {
                for (octave_idx_type row = 0; row < nRows; row++)
                  {
                    img_fvec[idx++] = pix->red / divisor;
                    pix += row_shift;
                  }
                pix -= col_shift;
              }
          }
        break;
      }

    case Magick::GrayscaleMatteType:    // Grayscale image with opacity
      {
        img   = T (dim_vector (nRows, nCols, 1, nFrames));
        T alpha   (dim_vector (nRows, nCols, 1, nFrames));
        P *img_fvec = img.fortran_vec ();
        P *a_fvec   = alpha.fortran_vec ();

        octave_idx_type idx = 0;
        for (octave_idx_type frame = 0; frame < nFrames; frame++)
          {
            const Magick::PixelPacket *pix
              = imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                                       col_cache, row_cache);

            for (octave_idx_type col = 0; col < nCols; col++)
              {
                for (octave_idx_type row = 0; row < nRows; row++)
                  {
                    img_fvec[idx] = pix->red / divisor;
                    a_fvec[idx]   = (MaxRGB - pix->opacity) / divisor;
                    pix += row_shift;
                    idx++;
                  }
                pix -= col_shift;
              }
          }
        retval(2) = alpha;
        break;
      }

    case Magick::PaletteType:           // Indexed color (palette) image
    case Magick::TrueColorType:         // Truecolor image
      {
        img = T (dim_vector (nRows, nCols, 3, nFrames));
        P *img_fvec = img.fortran_vec ();

        for (octave_idx_type frame = 0; frame < nFrames; frame++)
          {
            const Magick::PixelPacket *pix
              = imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                                       col_cache, row_cache);

            octave_idx_type idx = 0;
            img_fvec += nRows * nCols * frame;
            P *rbuf   = img_fvec;
            P *gbuf   = img_fvec + nRows * nCols;
            P *bbuf   = img_fvec + nRows * nCols * 2;

            for (octave_idx_type col = 0; col < nCols; col++)
              {
                for (octave_idx_type row = 0; row < nRows; row++)
                  {
                    rbuf[idx] = pix->red   / divisor;
                    gbuf[idx] = pix->green / divisor;
                    bbuf[idx] = pix->blue  / divisor;
                    pix += row_shift;
                    idx++;
                  }
                pix -= col_shift;
              }
          }
        break;
      }

    case Magick::PaletteMatteType:      // Indexed color (palette) image with opacity
    case Magick::TrueColorMatteType:    // Truecolor image with opacity
      {
        img   = T (dim_vector (nRows, nCols, 3, nFrames));
        T alpha   (dim_vector (nRows, nCols, 1, nFrames));
        P *img_fvec = img.fortran_vec ();
        P *a_fvec   = alpha.fortran_vec ();

        // Unlike the index for the other channels, this one won't need
        // to be reset on each frame since it's a separate matrix.
        octave_idx_type a_idx = 0;
        for (octave_idx_type frame = 0; frame < nFrames; frame++)
          {
            const Magick::PixelPacket *pix
              = imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                                       col_cache, row_cache);

            octave_idx_type idx = 0;
            img_fvec += nRows * nCols * frame;
            P *rbuf   = img_fvec;
            P *gbuf   = img_fvec + nRows * nCols;
            P *bbuf   = img_fvec + nRows * nCols * 2;

            for (octave_idx_type col = 0; col < nCols; col++)
              {
                for (octave_idx_type row = 0; row < nRows; row++)
                  {
                    rbuf[idx]     = pix->red     / divisor;
                    gbuf[idx]     = pix->green   / divisor;
                    bbuf[idx]     = pix->blue    / divisor;
                    a_fvec[a_idx++] = (MaxRGB - pix->opacity) / divisor;
                    pix += row_shift;
                    idx++;
                  }
                pix -= col_shift;
              }
          }
        retval(2) = alpha;
        break;
      }

    case Magick::ColorSeparationType:   // Cyan/Yellow/Magenta/Black (CYMK) image
      {
        img   = T (dim_vector (nRows, nCols, 4, nFrames));
        P *img_fvec = img.fortran_vec ();

        for (octave_idx_type frame = 0; frame < nFrames; frame++)
          {
            const Magick::PixelPacket *pix
              = imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                                       col_cache, row_cache);

            octave_idx_type idx = 0;
            img_fvec += nRows * nCols * frame;
            P *cbuf   = img_fvec;
            P *mbuf   = img_fvec + nRows * nCols;
            P *ybuf   = img_fvec + nRows * nCols * 2;
            P *kbuf   = img_fvec + nRows * nCols * 3;

            for (octave_idx_type col = 0; col < nCols; col++)
              {
                for (octave_idx_type row = 0; row < nRows; row++)
                  {
                    cbuf[idx] = pix->red     / divisor;
                    mbuf[idx] = pix->green   / divisor;
                    ybuf[idx] = pix->blue    / divisor;
                    kbuf[idx] = pix->opacity / divisor;
                    pix += row_shift;
                    idx++;
                  }
                pix -= col_shift;
              }
          }
        break;
      }

    // Cyan, magenta, yellow, and black with alpha (opacity) channel
    case Magick::ColorSeparationMatteType:
      {
        img   = T (dim_vector (nRows, nCols, 4, nFrames));
        T alpha   (dim_vector (nRows, nCols, 1, nFrames));
        P *img_fvec = img.fortran_vec ();
        P *a_fvec   = alpha.fortran_vec ();

        // Unlike the index for the other channels, this one won't need
        // to be reset on each frame since it's a separate matrix.
        octave_idx_type a_idx = 0;
        for (octave_idx_type frame = 0; frame < nFrames; frame++)
          {
            const Magick::PixelPacket *pix
              = imvec[frameidx(frame)].getConstPixels (col_start, row_start,
                                                       col_cache, row_cache);
            // Note that for CMYKColorspace + matte (CMYKA), the opacity is
            // stored in the assocated IndexPacket.
            const Magick::IndexPacket *apix
              = imvec[frameidx(frame)].getConstIndexes ();

            octave_idx_type idx = 0;
            img_fvec += nRows * nCols * frame;
            P *cbuf   = img_fvec;
            P *mbuf   = img_fvec + nRows * nCols;
            P *ybuf   = img_fvec + nRows * nCols * 2;
            P *kbuf   = img_fvec + nRows * nCols * 3;

            for (octave_idx_type col = 0; col < nCols; col++)
              {
                for (octave_idx_type row = 0; row < nRows; row++)
                  {
                    cbuf[idx]     = pix->red     / divisor;
                    mbuf[idx]     = pix->green   / divisor;
                    ybuf[idx]     = pix->blue    / divisor;
                    kbuf[idx]     = pix->opacity / divisor;
                    a_fvec[a_idx++] = (MaxRGB - *apix) / divisor;
                    pix += row_shift;
                    idx++;
                  }
                pix -= col_shift;
              }
          }
        retval(2) = alpha;
        break;
      }

    default:
      error ("__magick_read__: unknown Magick++ image type");
      return retval;
    }

  retval(0) = img;
  return retval;
}

// Read a file into vector of image objects.
void static
read_file (const std::string& filename, std::vector<Magick::Image>& imvec)
{
  try
    {
      Magick::readImages (&imvec, filename);
    }
  catch (Magick::Warning& w)
    {
      warning ("Magick++ warning: %s", w.what ());
    }
  catch (Magick::ErrorCoder& e)
    {
      // FIXME: there's a WarningCoder and ErrorCoder. Shouldn't this
      // exception cause an error?
      warning ("Magick++ coder error: %s", e.what ());
    }
  catch (Magick::Exception& e)
    {
      error ("Magick++ exception: %s", e.what ());
      error_state = 1;
    }
}

static void
maybe_initialize_magick (void)
{
  static bool initialized = false;

  if (! initialized)
    {
      // Save locale as GraphicsMagick might change this (fixed in
      // GraphicsMagick since version 1.3.13 released on December 24, 2011)
      const char *static_locale = setlocale (LC_ALL, NULL);
      const std::string locale (static_locale);

      const std::string program_name = octave_env::get_program_invocation_name ();
      Magick::InitializeMagick (program_name.c_str ());

      // Restore locale from before GraphicsMagick initialisation
      setlocale (LC_ALL, locale.c_str ());

      if (QuantumDepth < 32)
        warning ("your version of %s limits images to %d bits per pixel",
                 MagickPackageName, QuantumDepth);

      initialized = true;
    }
}
#endif

DEFUN_DLD (__magick_read__, args, nargout,
  "-*- texinfo -*-\n\
@deftypefn {Loadable Function} {[@var{img}, @var{map}, @var{alpha}] =} __magick_read__ (@var{fname}, @var{options})\n\
Read image with GraphicsMagick or ImageMagick.\n\
\n\
This is a private internal function not intended for direct use.  Instead\n\
use @code{imread}.\n\
\n\
@seealso{imfinfo, imformats, imread, imwrite}\n\
@end deftypefn")
{
  octave_value_list output;

#ifndef HAVE_MAGICK
  gripe_disabled_feature ("imread", "Image IO");
#else

  maybe_initialize_magick ();

  if (args.length () != 2 || ! args(0).is_string ())
    {
      print_usage ();
      return output;
    }

  const octave_scalar_map options = args(1).scalar_map_value ();
  if (error_state)
    {
      error ("__magick_read__: OPTIONS must be a struct");
      return output;
    }

  std::vector<Magick::Image> imvec;
  read_file (args(0).string_value (), imvec);
  if (error_state)
    return output;

  // Prepare an Array with the indexes for the requested frames.
  const octave_idx_type nFrames = imvec.size ();
  Array<octave_idx_type> frameidx;
  const octave_value indexes = options.getfield ("index");
  if (indexes.is_string () && indexes.string_value () == "all")
    {
      frameidx.resize (dim_vector (1, nFrames));
      for (octave_idx_type i = 0; i < nFrames; i++)
        frameidx(i) = i;
    }
  else
    {
      frameidx = indexes.int_vector_value ();
      if (error_state)
        {
          error ("__magick_read__: invalid value for Index/Frame");
          return output;
        }
      // Fix indexes from base 1 to base 0, and at the same time, make
      // sure none of the indexes is outside the range of image number.
      const octave_idx_type n = frameidx.nelem ();
      for (octave_idx_type i = 0; i < n; i++)
        {
          frameidx(i)--;
          if (frameidx(i) < 0 || frameidx(i) > nFrames - 1)
            {
              error ("imread: index/frames specified are outside the number of images");
              return output;
            }
        }
    }

  const Magick::ClassType klass = imvec[frameidx(0)].classType ();
  const octave_idx_type depth   = imvec[frameidx(0)].depth ();

  // Magick::ClassType
  // PseudoClass:
  // Image is composed of pixels which specify an index in a color palette.
  // DirectClass:
  // Image is composed of pixels which represent literal color values.

  // FIXME: GraphicsMagick does not really distinguishes between indexed and
  //        normal images. After reading a file, it decides itself the optimal
  //        way to store the image in memory, independently of the how the
  //        image was stored in the file. That's what ClassType returns. While
  //        it seems to match the original file most of the times, this is
  //        not necessarily true all the times. See
  //          https://sourceforge.net/mailarchive/message.php?msg_id=31180507
  //        A grayscale jpeg image reports being indexed even though the JPEG
  //        format has no support for indexed images. So we can skip at least
  //        for that.

  if (klass == Magick::PseudoClass && imvec[0].magick () != "JPEG")
    {
      if (depth <= 1)
        output = read_indexed_images<boolNDArray>   (imvec, frameidx,
                                                     nargout, options);
      else if (depth <= 8)
        output = read_indexed_images<uint8NDArray>  (imvec, frameidx,
                                                     nargout, options);
      else if (depth <= 16)
        output = read_indexed_images<uint16NDArray> (imvec, frameidx,
                                                     nargout, options);
      else
        {
          error ("imread: indexed images with depths greater than 16-bit are not supported");
          return output;
        }
    }

  else
    {
      if (depth <= 1)
        output = read_images<boolNDArray>   (imvec, frameidx, nargout, options);
      else if (depth <= 8)
        output = read_images<uint8NDArray>  (imvec, frameidx, nargout, options);
      else if (depth <= 16)
        output = read_images<uint16NDArray> (imvec, frameidx, nargout, options);
      else if (depth <= 32)
        output = read_images<FloatNDArray>  (imvec, frameidx, nargout, options);
      else
        {
          error ("imread: reading of images with %i-bit depth is not supported",
                 depth);
        }
    }

#endif
  return output;
}

/*
## No test needed for internal helper function.
%!assert (1)
*/

#ifdef HAVE_MAGICK

template <class T>
static uint32NDArray
img_float2uint (const T& img)
{
  typedef typename T::element_type P;
  uint32NDArray out (img.dims ());

  octave_uint32* out_fvec = out.fortran_vec ();
  const P*       img_fvec = img.fortran_vec ();

  const octave_uint32 max = octave_uint32::max ();
  const octave_idx_type numel = img.numel ();
  for (octave_idx_type idx = 0; idx < numel; idx++)
    out_fvec[idx] = img_fvec[idx] * max;

  return out;
}

template <class T>
static void
encode_indexed_images (std::vector<Magick::Image>& imvec,
                       const T& img,
                       const Matrix& cmap)
{
  typedef typename T::element_type P;
  const octave_idx_type nFrames   = img.ndims () < 4 ? 1 : img.dims ()(3);
  const octave_idx_type nRows     = img.rows ();
  const octave_idx_type nCols     = img.columns ();
  const octave_idx_type cmap_size = cmap.rows ();
  const octave_idx_type bitdepth  =
    sizeof (P) * std::numeric_limits<unsigned char>::digits;

  // There is no colormap object, we need to build a new one for each frame,
  // even if it's always the same. We can least get a vector for the Colors.
  std::vector<Magick::ColorRGB> colormap;
  {
    const double* cmap_fvec = cmap.fortran_vec ();
    const octave_idx_type G_offset = cmap_size;
    const octave_idx_type B_offset = cmap_size * 2;
    for (octave_idx_type map_idx = 0; map_idx < cmap_size; map_idx++)
      colormap.push_back (Magick::ColorRGB (cmap_fvec[map_idx],
                                            cmap_fvec[map_idx + G_offset],
                                            cmap_fvec[map_idx + B_offset]));
  }

  for (octave_idx_type frame = 0; frame < nFrames; frame++)
    {
      Magick::Image m_img (Magick::Geometry (nCols, nRows), "black");

      // Ensure that there are no other references to this image.
      m_img.modifyImage ();

      m_img.classType (Magick::PseudoClass);
      m_img.type (Magick::PaletteType);
      // FIXME: for some reason, setting bitdepth doesn't seem to work for
      //        indexed images.
      m_img.depth (bitdepth);

      // Insert colormap.
      m_img.colorMapSize (cmap_size);
      for (octave_idx_type map_idx = 0; map_idx < cmap_size; map_idx++)
        m_img.colorMap (map_idx, colormap[map_idx]);

      // Why are we also setting the pixel values instead of only the
      // index values? We don't know if a file format supports indexed
      // images. If we only set the indexes and then try to save the
      // image as JPEG for example, the indexed values get discarded,
      // there is no conversion from the indexes, it's the initial values
      // that get used. An alternative would be to only set the pixel
      // values (no indexes), then set the image as PseudoClass and GM
      // would create a colormap for us. However, we wouldn't have control
      // over the order of that colormap. And that's why we set both.
      Magick::PixelPacket* pix  = m_img.getPixels (0, 0, nCols, nRows);
      Magick::IndexPacket* ind  = m_img.getIndexes ();
      const P* img_fvec         = img.fortran_vec ();

      octave_idx_type GM_idx = 0;
      for (octave_idx_type column = 0; column < nCols; column++)
        {
          for (octave_idx_type row = 0; row < nRows; row++)
            {
              ind[GM_idx] = double (*img_fvec);
              pix[GM_idx] = m_img.colorMap (double (*img_fvec));
              img_fvec++;
              GM_idx += nCols;
            }
          GM_idx -= nCols * nRows - 1;
        }

      // Save changes to underlying image.
      m_img.syncPixels ();
      imvec.push_back (m_img);
    }
}

static void
encode_bool_image (std::vector<Magick::Image>& imvec, const octave_value& img)
{
  unsigned int nframes = 1;
  boolNDArray m = img.bool_array_value ();

  dim_vector dsizes = m.dims ();
  if (dsizes.length () == 4)
    nframes = dsizes(3);

  Array<octave_idx_type> idx (dim_vector (dsizes.length (), 1));

  octave_idx_type rows = m.rows ();
  octave_idx_type columns = m.columns ();

  for (unsigned int ii = 0; ii < nframes; ii++)
    {
      Magick::Image im (Magick::Geometry (columns, rows), "black");
      im.classType (Magick::DirectClass);
      im.depth (1);

      for (int y = 0; y < columns; y++)
        {
          idx(1) = y;

          for (int x = 0; x < rows; x++)
            {
              if (nframes > 1)
                {
                  idx(2) = 0;
                  idx(3) = ii;
                }

              idx(0) = x;

              if (m(idx))
                im.pixelColor (y, x, "white");
            }
        }

      im.quantizeColorSpace (Magick::GRAYColorspace);
      im.quantizeColors (2);
      im.quantize ();

      imvec.push_back (im);
    }
}

template <class T>
static void
encode_uint_image (std::vector<Magick::Image>& imvec,
                   const octave_value& img)
{
  unsigned int bitdepth = 0;
  T m;

  if (img.is_uint8_type ())
    {
      bitdepth = 8;
      m = img.uint8_array_value ();
    }
  else if (img.is_uint16_type ())
    {
      bitdepth = 16;
      m = img.uint16_array_value ();
    }
  else if (img.is_uint32_type ())
    {
      bitdepth = 32;
      m = img.uint32_array_value ();
    }
  else
    error ("__magick_write__: invalid image class");

  const dim_vector dsizes = m.dims ();
  unsigned int nframes = 1;
  if (dsizes.length () == 4)
    nframes = dsizes(3);

  const bool is_color = ((dsizes.length () > 2) && (dsizes(2) > 2));
  const bool has_alpha = (dsizes.length () > 2 && (dsizes(2) == 2 || dsizes(2) == 4));

  Array<octave_idx_type> idx (dim_vector (dsizes.length (), 1));
  octave_idx_type rows = m.rows ();
  octave_idx_type columns = m.columns ();

  double div_factor = (uint64_t(1) << bitdepth) - 1;

  for (unsigned int ii = 0; ii < nframes; ii++)
    {
      Magick::Image im (Magick::Geometry (columns, rows), "black");

      im.depth (bitdepth);

      im.classType (Magick::DirectClass);

      if (is_color)
        {
          if (has_alpha)
            im.type (Magick::TrueColorMatteType);
          else
            im.type (Magick::TrueColorType);

          Magick::ColorRGB c;

          for (int y = 0; y < columns; y++)
            {
              idx(1) = y;

              for (int x = 0; x < rows; x++)
                {
                  idx(0) = x;

                  if (nframes > 1)
                    idx(3) = ii;

                  idx(2) = 0;
                  c.red (static_cast<double>(m(idx)) / div_factor);

                  idx(2) = 1;
                  c.green (static_cast<double>(m(idx)) / div_factor);

                  idx(2) = 2;
                  c.blue (static_cast<double>(m(idx)) / div_factor);

                  if (has_alpha)
                    {
                      idx(2) = 3;
                      c.alpha (static_cast<double>(m(idx)) / div_factor);
                    }

                  im.pixelColor (y, x, c);
                }
            }
        }
      else
        {
          if (has_alpha)
            im.type (Magick::GrayscaleMatteType);
          else
            im.type (Magick::GrayscaleType);

          Magick::ColorGray c;

          for (int y = 0; y < columns; y++)
            {
              idx(1) = y;

              for (int x=0; x < rows; x++)
                {
                  idx(0) = x;

                  if (nframes > 1)
                    {
                      idx(2) = 0;
                      idx(3) = ii;
                    }

                  if (has_alpha)
                    {
                      idx(2) = 1;
                      c.alpha (static_cast<double>(m(idx)) / div_factor);
                      idx(2) = 0;
                    }

                  c.shade (static_cast<double>(m(idx)) / div_factor);

                  im.pixelColor (y, x, c);
                }
            }

          im.quantizeColorSpace (Magick::GRAYColorspace);
          im.quantizeColors (1 << bitdepth);
          im.quantize ();
        }

      imvec.push_back (im);
    }
}

void static
write_file (const std::string& filename,
            const std::string& ext,
            std::vector<Magick::Image>& imvec)
{
  try
    {
      Magick::writeImages (imvec.begin (), imvec.end (), ext + ":" + filename);
    }
  catch (Magick::Warning& w)
    {
      warning ("Magick++ warning: %s", w.what ());
    }
  catch (Magick::ErrorCoder& e)
    {
      warning ("Magick++ coder error: %s", e.what ());
    }
  catch (Magick::Exception& e)
    {
      error ("Magick++ exception: %s", e.what ());
      error_state = 1;
    }
}

#endif

DEFUN_DLD (__magick_write__, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Loadable Function} {} __magick_write__ (@var{fname}, @var{fmt}, @var{img}, @var{map}, @var{options})\n\
Write image with GraphicsMagick or ImageMagick.\n\
\n\
This is a private internal function not intended for direct use.  Instead\n\
use @code{imwrite}.\n\
\n\
@seealso{imfinfo, imformats, imread, imwrite}\n\
@end deftypefn")
{
  octave_value_list retval;

#ifndef HAVE_MAGICK
  gripe_disabled_feature ("imwrite", "Image IO");
#else

  maybe_initialize_magick ();

  if (args.length () != 5 || ! args(0).is_string () || ! args(1).is_string ())
    {
      print_usage ();
      return retval;
    }
  const std::string filename = args(0).string_value ();
  const std::string ext      = args(1).string_value ();

  const octave_scalar_map options = args(4).scalar_map_value ();
  if (error_state)
    {
      error ("__magick_write__: OPTIONS must be a struct");
      return retval;
    }

  const octave_value img  = args(2);
  const Matrix       cmap = args(3).matrix_value ();
  if (error_state)
    {
      error ("__magick_write__: invalid IMG or MAP");
      return retval;
    }

  std::vector<Magick::Image> imvec;

  if (cmap.is_empty ())
    {
      if (img.is_bool_type ())
        encode_bool_image (imvec, img);
      else if (img.is_uint8_type ())
        encode_uint_image<uint8NDArray> (imvec, img);
      else if (img.is_uint16_type ())
        encode_uint_image<uint16NDArray> (imvec, img);
      else if (img.is_uint32_type ())
        encode_uint_image<uint32NDArray> (imvec, img);
      else if (img.is_float_type ())
        {
          // For image formats that support floating point values, we write
          // the actual values. For those who don't, we only use the values
          // on the range [0 1] and save integer values.
          // But here, even for formats that would support floating point
          // values, GM seems unable to do that so we at least make them uint32.
          uint32NDArray clip_img;
          if (img.is_single_type ())
            clip_img = img_float2uint<FloatNDArray> (img.float_array_value ());
          else
            clip_img = img_float2uint<NDArray> (img.array_value ());

          encode_uint_image<uint32NDArray> (imvec, octave_value (clip_img));
        }
      else
        {
          error ("__magick_write__: image type not supported");
          return retval;
        }
    }
  else
    {
      // We should not get floating point indexed images here because we
      // converted them in __imwrite__.m. We should probably do it here
      // but it would look much messier.
      if (img.is_uint8_type ())
        encode_indexed_images<uint8NDArray>  (imvec, img.uint8_array_value (),
                                              cmap);
      else if (img.is_uint16_type ())
        encode_indexed_images<uint16NDArray> (imvec, img.uint16_array_value (),
                                              cmap);
      else
        {
          error ("__magick_write__: indexed image must be uint8, uint16 or float.");
          return retval;
        }
    }

  const octave_idx_type nFrames = imvec.size ();

  // FIXME What happens when we try to set with formats that do not support it?
  const octave_idx_type quality = options.getfield ("quality").int_value ();
  for (octave_idx_type i = 0; i < nFrames; i++)
    imvec[i].quality (quality);

  // If writemode is set to append, read the image and append to it. Even
  // if set to append, make sure that something was read at all.
  const std::string writemode = options.getfield ("writemode").string_value ();
  if (writemode == "append" && file_stat (filename).exists ())
    {
      std::vector<Magick::Image> ini_imvec;
      read_file (filename, ini_imvec);
      if (error_state)
          return retval;
      if (ini_imvec.size () > 0)
        {
          ini_imvec.insert (ini_imvec.end (), imvec.begin (), imvec.end ());
          ini_imvec.swap (imvec);
        }
    }

  write_file (filename, ext, imvec);
  if (error_state)
    return retval;

#endif
  return retval;
}

/*
## No test needed for internal helper function.
%!assert (1)
*/

#ifdef HAVE_MAGICK

template<class T>
static octave_value
magick_to_octave_value (const T magick)
{
  return octave_value (magick);
}

static octave_value
magick_to_octave_value (const Magick::EndianType magick)
{
  switch (magick)
    {
      case Magick::LSBEndian:
        return octave_value ("little-endian");

      case Magick::MSBEndian:
        return octave_value ("big-endian");

      default:
        return octave_value ("undefined");
    }
}

static octave_value
magick_to_octave_value (const Magick::ResolutionType magick)
{
  switch (magick)
    {
      case Magick::PixelsPerInchResolution:
        return octave_value ("pixels per inch");

      case Magick::PixelsPerCentimeterResolution:
        return octave_value ("pixels per centimeter");

      default:
        return octave_value ("undefined");
    }
}

static octave_value
magick_to_octave_value (const Magick::ImageType magick)
{
  switch (magick)
    {
      case Magick::BilevelType:
      case Magick::GrayscaleType:
      case Magick::GrayscaleMatteType:
        return octave_value ("grayscale");

      case Magick::PaletteType:
      case Magick::PaletteMatteType:
        return octave_value ("indexed");

      case Magick::TrueColorType:
      case Magick::TrueColorMatteType:
      case Magick::ColorSeparationType:
        return octave_value ("truecolor");

      default:
        return octave_value ("undefined");
    }
}

// We put this in a try-block because GraphicsMagick will throw
// exceptions if a parameter isn't present in the current image.
#define GET_PARAM(NAME, OUTNAME) \
  try \
    { \
      info.contents (OUTNAME)(frame,0) = magick_to_octave_value (im.NAME ()); \
    } \
  catch (Magick::Warning& w) \
    { \
    }

#endif

DEFUN_DLD (__magick_finfo__, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Loadable Function} {} __magick_finfo__ (@var{fname})\n\
Read image information with GraphicsMagick or ImageMagick.\n\
\n\
This is a private internal function not intended for direct use.  Instead\n\
use @code{imfinfo}.\n\
\n\
@seealso{imfinfo, imformats, imread, imwrite}\n\
@end deftypefn")
{
  octave_value retval;

#ifndef HAVE_MAGICK
  gripe_disabled_feature ("imfinfo", "Image IO");
#else

  maybe_initialize_magick ();

  if (args.length () < 1 || ! args(0).is_string ())
    {
      print_usage ();
      return retval;
    }

  const std::string filename = args(0).string_value ();

  try
    {
      // Read the file.
      std::vector<Magick::Image> imvec;
      Magick::readImages (&imvec, args(0).string_value ());
      int nframes = imvec.size ();

      // Create the right size for the output.

      static const char *fields[] =
        {
          "Filename",
          "FileModDate",
          "FileSize",
          "Height",
          "Width",
          "BitDepth",
          "Format",
          "LongFormat",
          "XResolution",
          "YResolution",
          "TotalColors",
          "TileName",
          "AnimationDelay",
          "AnimationIterations",
          "ByteOrder",
          "Gamma",
          "Matte",
          "ModulusDepth",
          "Quality",
          "QuantizeColors",
          "ResolutionUnits",
          "ColorType",
          "View",
          0
        };

      octave_map info (dim_vector (nframes, 1), string_vector (fields));

      file_stat fs (filename);

      std::string filetime;

      if (fs)
        {
          octave_localtime mtime = fs.mtime ();

          filetime = mtime.strftime ("%e-%b-%Y %H:%M:%S");
        }
      else
        {
          std::string msg = fs.error ();

          error ("imfinfo: error reading '%s': %s",
                 filename.c_str (), msg.c_str ());

          return retval;
        }

      // For each frame in the image (some images contain multiple
      // layers, each to be treated like a separate image).
      for (int frame = 0; frame < nframes; frame++)
        {
          Magick::Image im = imvec[frame];

          // Add file name and timestamp.
          info.contents ("Filename")(frame,0) = filename;
          info.contents ("FileModDate")(frame,0) = filetime;

          // Annoying CamelCase naming is for Matlab compatibility.
          GET_PARAM (fileSize, "FileSize")
          GET_PARAM (rows, "Height")
          GET_PARAM (columns, "Width")
          GET_PARAM (depth, "BitDepth")
          GET_PARAM (magick, "Format")
          GET_PARAM (format, "LongFormat")
          GET_PARAM (xResolution, "XResolution")
          GET_PARAM (yResolution, "YResolution")
          GET_PARAM (totalColors, "TotalColors")
          GET_PARAM (tileName, "TileName")
          GET_PARAM (animationDelay, "AnimationDelay")
          GET_PARAM (animationIterations, "AnimationIterations")
          GET_PARAM (endian, "ByteOrder")
          GET_PARAM (gamma, "Gamma")
          GET_PARAM (matte, "Matte")
          GET_PARAM (modulusDepth, "ModulusDepth")
          GET_PARAM (quality, "Quality")
          GET_PARAM (quantizeColors, "QuantizeColors")
          GET_PARAM (resolutionUnits, "ResolutionUnits")
          GET_PARAM (type, "ColorType")
          GET_PARAM (view, "View")
        }

      retval = octave_value (info);
    }
  catch (Magick::Warning& w)
    {
      warning ("Magick++ warning: %s", w.what ());
    }
  catch (Magick::ErrorCoder& e)
    {
      warning ("Magick++ coder error: %s", e.what ());
    }
  catch (Magick::Exception& e)
    {
      error ("Magick++ exception: %s", e.what ());
      return retval;
    }
#endif
  return retval;
}

/*
## No test needed for internal helper function.
%!assert (1)
*/

#undef GET_PARAM

DEFUN_DLD (__magick_formats__, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Loadable Function} {} __magick_imformats__ (@var{formats})\n\
Fill formats info with GraphicsMagick CoderInfo.\n\
\n\
@seealso{imfinfo, imformats, imread, imwrite}\n\
@end deftypefn")
{
  octave_value retval;
#ifndef HAVE_MAGICK
  gripe_disabled_feature ("imformats", "Image IO");
#else
  if (args.length () != 1 || ! args(0).is_map ())
    {
      print_usage ();
      return retval;
    }
  octave_map formats = args(0).map_value ();

  maybe_initialize_magick ();
  for (octave_idx_type idx = 0; idx < formats.numel (); idx++)
    {
      try
        {
          octave_scalar_map fmt = formats.checkelem (idx);
          Magick::CoderInfo coder (fmt.getfield ("coder").string_value ());

          fmt.setfield ("description", octave_value (coder.description ()));
          fmt.setfield ("multipage", coder.isMultiFrame () ? true : false);
          // default for read and write is a function handle. If we can't
          // read or write them, them set it to an empty value
          if (! coder.isReadable ())
            fmt.setfield ("read",  Matrix ());
          if (! coder.isWritable ())
            fmt.setfield ("write", Matrix ());
          formats.fast_elem_insert (idx, fmt);
        }
      catch (Magick::Exception& e)
        {
          // Exception here are missing formats. So we remove the format
          // from the structure and reduce idx.
          formats.delete_elements (idx);
          idx--;
        }
    }
  retval = formats;
#endif
  return retval;
}

/*
## No test needed for internal helper function.
%!assert (1)
*/