view scripts/optimization/fminunc.m @ 17281:bc924baa2c4e

doc: Add new @qcode macro for code samples which are quoted. Macro handles options ("on") or properties ("position") more elegantly than @code{"text"}. * doc/interpreter/macros.texi: Add new @qcode macro. * doc/interpreter/tips.txi: Add documentation about @qcode macro. * doc/interpreter/basics.txi, doc/interpreter/container.txi, doc/interpreter/emacs.txi, doc/interpreter/errors.txi, doc/interpreter/eval.txi, doc/interpreter/expr.txi, doc/interpreter/external.txi, doc/interpreter/func.txi, doc/interpreter/grammar.txi, doc/interpreter/image.txi, doc/interpreter/install.txi, doc/interpreter/interp.txi, doc/interpreter/io.txi, doc/interpreter/matrix.txi, doc/interpreter/numbers.txi, doc/interpreter/oop.txi, doc/interpreter/package.txi, doc/interpreter/plot.txi, doc/interpreter/quad.txi, doc/interpreter/sparse.txi, doc/interpreter/strings.txi, doc/interpreter/system.txi, doc/interpreter/vectorize.txi, libinterp/corefcn/balance.cc, libinterp/corefcn/bitfcns.cc, libinterp/corefcn/cellfun.cc, libinterp/corefcn/conv2.cc, libinterp/corefcn/data.cc, libinterp/corefcn/debug.cc, libinterp/corefcn/defaults.cc, libinterp/corefcn/dirfns.cc, libinterp/corefcn/dlmread.cc, libinterp/corefcn/error.cc, libinterp/corefcn/file-io.cc, libinterp/corefcn/find.cc, libinterp/corefcn/gammainc.cc, libinterp/corefcn/graphics.cc, libinterp/corefcn/help.cc, libinterp/corefcn/hex2num.cc, libinterp/corefcn/input.cc, libinterp/corefcn/load-path.cc, libinterp/corefcn/load-save.cc, libinterp/corefcn/ls-oct-ascii.cc, libinterp/corefcn/lu.cc, libinterp/corefcn/luinc.cc, libinterp/corefcn/matrix_type.cc, libinterp/corefcn/oct-hist.cc, libinterp/corefcn/pager.cc, libinterp/corefcn/pr-output.cc, libinterp/corefcn/pt-jit.cc, libinterp/corefcn/qz.cc, libinterp/corefcn/rand.cc, libinterp/corefcn/regexp.cc, libinterp/corefcn/schur.cc, libinterp/corefcn/sighandlers.cc, libinterp/corefcn/sparse.cc, libinterp/corefcn/spparms.cc, libinterp/corefcn/str2double.cc, libinterp/corefcn/svd.cc, libinterp/corefcn/symtab.cc, libinterp/corefcn/syscalls.cc, libinterp/corefcn/toplev.cc, libinterp/corefcn/tril.cc, libinterp/corefcn/typecast.cc, libinterp/corefcn/utils.cc, libinterp/corefcn/variables.cc, libinterp/dldfcn/__init_fltk__.cc, libinterp/dldfcn/chol.cc, libinterp/dldfcn/colamd.cc, libinterp/dldfcn/fftw.cc, libinterp/dldfcn/qr.cc, libinterp/dldfcn/symbfact.cc, libinterp/octave-value/ov-base.cc, libinterp/octave-value/ov-fcn-handle.cc, libinterp/octave-value/ov-fcn-inline.cc, libinterp/octave-value/ov-java.cc, libinterp/octave-value/ov-range.cc, libinterp/octave-value/ov-struct.cc, libinterp/octave-value/ov-usr-fcn.cc, libinterp/parse-tree/oct-parse.in.yy, libinterp/parse-tree/pt-binop.cc, libinterp/parse-tree/pt-eval.cc, libinterp/parse-tree/pt-mat.cc, scripts/@ftp/ftp.m, scripts/deprecated/java_convert_matrix.m, scripts/deprecated/java_debug.m, scripts/deprecated/java_unsigned_conversion.m, scripts/deprecated/shell_cmd.m, scripts/general/dblquad.m, scripts/general/display.m, scripts/general/genvarname.m, scripts/general/idivide.m, scripts/general/interp1.m, scripts/general/interp2.m, scripts/general/interp3.m, scripts/general/interpn.m, scripts/general/isa.m, scripts/general/profexplore.m, scripts/general/profile.m, scripts/general/quadgk.m, scripts/general/randi.m, scripts/general/structfun.m, scripts/general/subsindex.m, scripts/general/triplequad.m, scripts/geometry/griddata.m, scripts/geometry/griddata3.m, scripts/geometry/griddatan.m, scripts/geometry/voronoi.m, scripts/help/help.m, scripts/help/lookfor.m, scripts/image/cmpermute.m, scripts/image/colormap.m, scripts/image/image.m, scripts/image/imagesc.m, scripts/image/imfinfo.m, scripts/image/imformats.m, scripts/image/imread.m, scripts/image/imshow.m, scripts/image/imwrite.m, scripts/image/ind2gray.m, scripts/image/lines.m, scripts/image/rgb2ind.m, scripts/image/spinmap.m, scripts/io/dlmwrite.m, scripts/io/strread.m, scripts/io/textread.m, scripts/io/textscan.m, scripts/java/javaclasspath.m, scripts/java/usejava.m, scripts/miscellaneous/bzip2.m, scripts/miscellaneous/computer.m, scripts/miscellaneous/copyfile.m, scripts/miscellaneous/debug.m, scripts/miscellaneous/dos.m, scripts/miscellaneous/edit.m, scripts/miscellaneous/gzip.m, scripts/miscellaneous/license.m, scripts/miscellaneous/mkoctfile.m, scripts/miscellaneous/movefile.m, scripts/miscellaneous/parseparams.m, scripts/miscellaneous/unix.m, scripts/optimization/fminbnd.m, scripts/optimization/fminsearch.m, scripts/optimization/fminunc.m, scripts/optimization/fsolve.m, scripts/optimization/fzero.m, scripts/optimization/glpk.m, scripts/optimization/lsqnonneg.m, scripts/optimization/optimset.m, scripts/optimization/pqpnonneg.m, scripts/pkg/pkg.m, scripts/plot/allchild.m, scripts/plot/ancestor.m, scripts/plot/area.m, scripts/plot/axis.m, scripts/plot/bar.m, scripts/plot/barh.m, scripts/plot/box.m, scripts/plot/caxis.m, scripts/plot/cla.m, scripts/plot/clabel.m, scripts/plot/clf.m, scripts/plot/close.m, scripts/plot/colorbar.m, scripts/plot/daspect.m, scripts/plot/ezmesh.m, scripts/plot/ezmeshc.m, scripts/plot/ezsurf.m, scripts/plot/ezsurfc.m, scripts/plot/findall.m, scripts/plot/findobj.m, scripts/plot/gcbo.m, scripts/plot/gcf.m, scripts/plot/gco.m, scripts/plot/grid.m, scripts/plot/guihandles.m, scripts/plot/hdl2struct.m, scripts/plot/hidden.m, scripts/plot/hold.m, scripts/plot/isonormals.m, scripts/plot/isosurface.m, scripts/plot/legend.m, scripts/plot/mesh.m, scripts/plot/meshc.m, scripts/plot/meshz.m, scripts/plot/newplot.m, scripts/plot/orient.m, scripts/plot/pareto.m, scripts/plot/patch.m, scripts/plot/pbaspect.m, scripts/plot/pcolor.m, scripts/plot/plot.m, scripts/plot/print.m, scripts/plot/private/__add_default_menu__.m, scripts/plot/quiver.m, scripts/plot/quiver3.m, scripts/plot/refreshdata.m, scripts/plot/saveas.m, scripts/plot/scatter.m, scripts/plot/scatter3.m, scripts/plot/shading.m, scripts/plot/shrinkfaces.m, scripts/plot/slice.m, scripts/plot/stem.m, scripts/plot/stem3.m, scripts/plot/struct2hdl.m, scripts/plot/subplot.m, scripts/plot/surf.m, scripts/plot/surfc.m, scripts/plot/surfl.m, scripts/plot/tetramesh.m, scripts/plot/uigetfile.m, scripts/plot/uimenu.m, scripts/plot/uiputfile.m, scripts/plot/waterfall.m, scripts/plot/whitebg.m, scripts/plot/xlim.m, scripts/plot/ylim.m, scripts/plot/zlim.m, scripts/polynomial/conv.m, scripts/polynomial/polyout.m, scripts/polynomial/splinefit.m, scripts/set/ismember.m, scripts/set/powerset.m, scripts/set/setdiff.m, scripts/set/union.m, scripts/set/unique.m, scripts/signal/detrend.m, scripts/signal/filter2.m, scripts/signal/freqz.m, scripts/signal/periodogram.m, scripts/signal/spectral_adf.m, scripts/signal/spectral_xdf.m, scripts/sparse/eigs.m, scripts/sparse/svds.m, scripts/specfun/legendre.m, scripts/special-matrix/gallery.m, scripts/statistics/base/mean.m, scripts/statistics/base/moment.m, scripts/statistics/tests/cor_test.m, scripts/statistics/tests/kolmogorov_smirnov_test.m, scripts/statistics/tests/kolmogorov_smirnov_test_2.m, scripts/statistics/tests/kruskal_wallis_test.m, scripts/statistics/tests/prop_test_2.m, scripts/statistics/tests/sign_test.m, scripts/statistics/tests/t_test.m, scripts/statistics/tests/t_test_2.m, scripts/statistics/tests/t_test_regression.m, scripts/statistics/tests/u_test.m, scripts/statistics/tests/var_test.m, scripts/statistics/tests/welch_test.m, scripts/statistics/tests/wilcoxon_test.m, scripts/statistics/tests/z_test.m, scripts/statistics/tests/z_test_2.m, scripts/strings/base2dec.m, scripts/strings/index.m, scripts/strings/isstrprop.m, scripts/strings/mat2str.m, scripts/strings/regexptranslate.m, scripts/strings/rindex.m, scripts/strings/str2num.m, scripts/strings/strcat.m, scripts/strings/strjust.m, scripts/strings/strmatch.m, scripts/strings/validatestring.m, scripts/testfun/demo.m, scripts/testfun/example.m, scripts/testfun/test.m, scripts/time/addtodate.m, scripts/time/asctime.m, scripts/time/datestr.m, scripts/time/datetick.m, scripts/time/weekday.m, scripts/ui/errordlg.m, scripts/ui/helpdlg.m, scripts/ui/inputdlg.m, scripts/ui/listdlg.m, scripts/ui/msgbox.m, scripts/ui/questdlg.m, scripts/ui/warndlg.m: Use new @qcode macro.
author Rik <rik@octave.org>
date Mon, 19 Aug 2013 20:46:38 -0700
parents e0525ecf156e
children 1c89599167a6
line wrap: on
line source

## Copyright (C) 2008-2012 VZLU Prague, a.s.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.
##
## Author: Jaroslav Hajek <highegg@gmail.com>

## -*- texinfo -*-
## @deftypefn  {Function File} {} fminunc (@var{fcn}, @var{x0})
## @deftypefnx {Function File} {} fminunc (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fvec}, @var{info}, @var{output}, @var{grad}, @var{hess}] =} fminunc (@var{fcn}, @dots{})
## Solve an unconstrained optimization problem defined by the function
## @var{fcn}.
##
## @var{fcn} should accepts a vector (array) defining the unknown variables,
## and return the objective function value, optionally with gradient.
## In other words, this function attempts to determine a vector @var{x} such
## that @code{@var{fcn} (@var{x})} is a local minimum.
## @var{x0} determines a starting guess.  The shape of @var{x0} is preserved
## in all calls to @var{fcn}, but otherwise is treated as a column vector.
## @var{options} is a structure specifying additional options.
## Currently, @code{fminunc} recognizes these options:
## @qcode{"FunValCheck"}, @qcode{"OutputFcn"}, @qcode{"TolX"},
## @qcode{"TolFun"}, @qcode{"MaxIter"}, @qcode{"MaxFunEvals"},
## @qcode{"GradObj"}, @qcode{"FinDiffType"},
## @qcode{"TypicalX"}, @qcode{"AutoScaling"}.
##
## If @qcode{"GradObj"} is @qcode{"on"}, it specifies that @var{fcn},
## called with 2 output arguments, also returns the Jacobian matrix
## of right-hand sides at the requested point.  @qcode{"TolX"} specifies
## the termination tolerance in the unknown variables, while
## @qcode{"TolFun"} is a tolerance for equations.  Default is @code{1e-7}
## for both @qcode{"TolX"} and @qcode{"TolFun"}.
##
## For description of the other options, see @code{optimset}.
##
## On return, @var{fval} contains the value of the function @var{fcn}
## evaluated at @var{x}, and @var{info} may be one of the following values:
##
## @table @asis
## @item 1
## Converged to a solution point.  Relative gradient error is less than
## specified
## by TolFun.
##
## @item 2
## Last relative step size was less that TolX.
##
## @item 3
## Last relative decrease in function value was less than TolF.
##
## @item 0
## Iteration limit exceeded.
##
## @item -3
## The trust region radius became excessively small.
## @end table
##
## Optionally, fminunc can also yield a structure with convergence statistics
## (@var{output}), the output gradient (@var{grad}) and approximate Hessian
## (@var{hess}).
##
## Notes: If you only have a single nonlinear equation of one variable then
## using @code{fminbnd} is usually a much better idea.  The algorithm used is a
## gradient search which depends on the objective function being differentiable.
## If the function has discontinuities it may be better to use a derivative-free
## algorithm such as @code{fminsearch}.
## @seealso{fminbnd, fminsearch, optimset}
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminunc");

function [x, fval, info, output, grad, hess] = fminunc (fcn, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fcn) && strcmp (fcn, 'defaults'))
    x = optimset ("MaxIter", 400, "MaxFunEvals", Inf,
                  "GradObj", "off", "TolX", 1e-7, "TolFun", 1e-7,
                  "OutputFcn", [], "FunValCheck", "off",
                  "FinDiffType", "central",
                  "TypicalX", [], "AutoScaling", "off");
    return;
  endif

  if (nargin < 2 || nargin > 3 || ! ismatrix (x0))
    print_usage ();
  endif

  if (ischar (fcn))
    fcn = str2func (fcn, "global");
  endif

  xsiz = size (x0);
  n = numel (x0);

  has_grad = strcmpi (optimget (options, "GradObj", "off"), "on");
  cdif = strcmpi (optimget (options, "FinDiffType", "central"), "central");
  maxiter = optimget (options, "MaxIter", 400);
  maxfev = optimget (options, "MaxFunEvals", Inf);
  outfcn = optimget (options, "OutputFcn");

  ## Get scaling matrix using the TypicalX option. If set to "auto", the
  ## scaling matrix is estimated using the jacobian.
  typicalx = optimget (options, "TypicalX");
  if (isempty (typicalx))
    typicalx = ones (n, 1);
  endif
  autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on");
  if (! autoscale)
    dg = 1 ./ typicalx;
  endif

  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");

  if (funvalchk)
    ## Replace fcn with a guarded version.
    fcn = @(x) guarded_eval (fcn, x);
  endif

  ## These defaults are rather stringent. I think that normally, user
  ## prefers accuracy to performance.

  macheps = eps (class (x0));

  tolx = optimget (options, "TolX", 1e-7);
  tolf = optimget (options, "TolFun", 1e-7);

  factor = 0.1;
  ## FIXME: TypicalX corresponds to user scaling (???)
  autodg = true;

  niter = 1;
  nfev = 0;

  x = x0(:);
  info = 0;

  ## Initial evaluation.
  fval = fcn (reshape (x, xsiz));
  n = length (x);

  if (! isempty (outfcn))
    optimvalues.iter = niter;
    optimvalues.funccount = nfev;
    optimvalues.fval = fval;
    optimvalues.searchdirection = zeros (n, 1);
    state = 'init';
    stop = outfcn (x, optimvalues, state);
    if (stop)
      info = -1;
      break;
    endif
  endif

  nsuciter = 0;
  lastratio = 0;

  grad = [];

  ## Outer loop.
  while (niter < maxiter && nfev < maxfev && ! info)

    grad0 = grad;

    ## Calculate function value and gradient (possibly via FD).
    if (has_grad)
      [fval, grad] = fcn (reshape (x, xsiz));
      grad = grad(:);
      nfev ++;
    else
      grad = __fdjac__ (fcn, reshape (x, xsiz), fval, typicalx, cdif)(:);
      nfev += (1 + cdif) * length (x);
    endif

    if (niter == 1)
      ## Initialize by identity matrix.
      hesr = eye (n);
    else
      ## Use the damped BFGS formula.
      y = grad - grad0;
      sBs = sumsq (w);
      Bs = hesr'*w;
      sy = y'*s;
      theta = 0.8 / max (1 - sy / sBs, 0.8);
      r = theta * y + (1-theta) * Bs;
      hesr = cholupdate (hesr, r / sqrt (s'*r), "+");
      [hesr, info] = cholupdate (hesr, Bs / sqrt (sBs), "-");
      if (info)
        hesr = eye (n);
      endif
    endif

    if (autoscale)
      ## Second derivatives approximate the hessian.
      d2f = norm (hesr, 'columns').';
      if (niter == 1)
        dg = d2f;
      else
        ## FIXME: maybe fixed lower and upper bounds?
        dg = max (0.1*dg, d2f);
      endif
    endif

    if (niter == 1)
      xn = norm (dg .* x);
      ## FIXME: something better?
      delta = factor * max (xn, 1);
    endif

    ## FIXME -- why tolf*n*xn? If abs (e) ~ abs(x) * eps is a vector
    ## of perturbations of x, then norm (hesr*e) <= eps*xn, i.e. by
    ## tolf ~ eps we demand as much accuracy as we can expect.
    if (norm (grad) <= tolf*n*xn)
      info = 1;
      break;
    endif

    suc = false;
    decfac = 0.5;

    ## Inner loop.
    while (! suc && niter <= maxiter && nfev < maxfev && ! info)

      s = - __doglegm__ (hesr, grad, dg, delta);

      sn = norm (dg .* s);
      if (niter == 1)
        delta = min (delta, sn);
      endif

      fval1 = fcn (reshape (x + s, xsiz)) (:);
      nfev ++;

      if (fval1 < fval)
        ## Scaled actual reduction.
        actred =  (fval - fval1) / (abs (fval1) + abs (fval));
      else
        actred = -1;
      endif

      w = hesr*s;
      ## Scaled predicted reduction, and ratio.
      t = 1/2 * sumsq (w) + grad'*s;
      if (t < 0)
        prered = -t/(abs (fval) + abs (fval + t));
        ratio = actred / prered;
      else
        prered = 0;
        ratio = 0;
      endif

      ## Update delta.
      if (ratio < min (max (0.1, 0.8*lastratio), 0.9))
        delta *= decfac;
        decfac ^= 1.4142;
        if (delta <= 1e1*macheps*xn)
          ## Trust region became uselessly small.
          info = -3;
          break;
        endif
      else
        lastratio = ratio;
        decfac = 0.5;
        if (abs (1-ratio) <= 0.1)
          delta = 1.4142*sn;
        elseif (ratio >= 0.5)
          delta = max (delta, 1.4142*sn);
        endif
      endif

      if (ratio >= 1e-4)
        ## Successful iteration.
        x += s;
        xn = norm (dg .* x);
        fval = fval1;
        nsuciter ++;
        suc = true;
      endif

      niter ++;

      ## FIXME: should outputfcn be only called after a successful iteration?
      if (! isempty (outfcn))
        optimvalues.iter = niter;
        optimvalues.funccount = nfev;
        optimvalues.fval = fval;
        optimvalues.searchdirection = s;
        state = 'iter';
        stop = outfcn (x, optimvalues, state);
        if (stop)
          info = -1;
          break;
        endif
      endif

      ## Tests for termination conditions. A mysterious place, anything
      ## can happen if you change something here...

      ## The rule of thumb (which I'm not sure M*b is quite following)
      ## is that for a tolerance that depends on scaling, only 0 makes
      ## sense as a default value. But 0 usually means uselessly long
      ## iterations, so we need scaling-independent tolerances wherever
      ## possible.

      ## The following tests done only after successful step.
      if (ratio >= 1e-4)
        ## This one is classic. Note that we use scaled variables again,
        ## but compare to scaled step, so nothing bad.
        if (sn <= tolx*xn)
          info = 2;
          ## Again a classic one.
        elseif (actred < tolf)
          info = 3;
        endif
      endif

    endwhile
  endwhile

  ## Restore original shapes.
  x = reshape (x, xsiz);

  output.iterations = niter;
  output.successful = nsuciter;
  output.funcCount = nfev;

  if (nargout > 5)
    hess = hesr'*hesr;
  endif

endfunction

## An assistant function that evaluates a function handle and checks for
## bad results.
function [fx, gx] = guarded_eval (fun, x)
  if (nargout > 1)
    [fx, gx] = fun (x);
  else
    fx = fun (x);
    gx = [];
  endif

  if (! (isreal (fx) && isreal (gx)))
    error ("fminunc:notreal", "fminunc: non-real value encountered");
  elseif (any (isnan (fx(:))))
    error ("fminunc:isnan", "fminunc: NaN value encountered");
  elseif (any (isinf (fx(:))))
    error ("fminunc:isinf", "fminunc: Inf value encountered");
  endif
endfunction


%!function f = __rosenb (x)
%!  n = length (x);
%!  f = sumsq (1 - x(1:n-1)) + 100 * sumsq (x(2:n) - x(1:n-1).^2);
%!endfunction
%!test
%! [x, fval, info, out] = fminunc (@__rosenb, [5, -5]);
%! tol = 2e-5;
%! assert (info > 0);
%! assert (x, ones (1, 2), tol);
%! assert (fval, 0, tol);
%!test
%! [x, fval, info, out] = fminunc (@__rosenb, zeros (1, 4));
%! tol = 2e-5;
%! assert (info > 0);
%! assert (x, ones (1, 4), tol);
%! assert (fval, 0, tol);
%% Test FunValCheck works correctly
%!assert (fminunc (@(x) x^2, 1, optimset ("FunValCheck", "on")), 0, eps)
%!error <non-real value> fminunc (@(x) x + i, 1, optimset ("FunValCheck", "on"))
%!error <NaN value> fminunc (@(x) x + NaN, 1, optimset ("FunValCheck", "on"))
%!error <Inf value> fminunc (@(x) x + Inf, 1, optimset ("FunValCheck", "on"))


## Solve the double dogleg trust-region minimization problem:
## Minimize 1/2*norm(r*x)^2  subject to the constraint norm(d.*x) <= delta,
## x being a convex combination of the gauss-newton and scaled gradient.

## TODO: error checks
## TODO: handle singularity, or leave it up to mldivide?

function x = __doglegm__ (r, g, d, delta)
  ## Get Gauss-Newton direction.
  b = r' \ g;
  x = r \ b;
  xn = norm (d .* x);
  if (xn > delta)
    ## GN is too big, get scaled gradient.
    s = g ./ d;
    sn = norm (s);
    if (sn > 0)
      ## Normalize and rescale.
      s = (s / sn) ./ d;
      ## Get the line minimizer in s direction.
      tn = norm (r*s);
      snm = (sn / tn) / tn;
      if (snm < delta)
        ## Get the dogleg path minimizer.
        bn = norm (b);
        dxn = delta/xn; snmd = snm/delta;
        t = (bn/sn) * (bn/xn) * snmd;
        t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
        alpha = dxn*(1-snmd^2) / t;
      else
        alpha = 0;
      endif
    else
      alpha = delta / xn;
      snm = 0;
    endif
    ## Form the appropriate convex combination.
    x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
  endif
endfunction