changeset 4347:024ef171aec3

[project @ 2003-02-20 23:31:46 by jwe]
author jwe
date Thu, 20 Feb 2003 23:32:25 +0000
parents d39de791ef9c
children 05415e529cef
files libcruft/ChangeLog libcruft/blas/sgemm.f libcruft/blas/sgemv.f libcruft/blas/sscal.f libcruft/blas/ssyrk.f libcruft/blas/strsm.f
diffstat 6 files changed, 1294 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- a/libcruft/ChangeLog	Thu Feb 20 21:38:39 2003 +0000
+++ b/libcruft/ChangeLog	Thu Feb 20 23:32:25 2003 +0000
@@ -1,3 +1,8 @@
+2003-02-20  John W. Eaton  <jwe@bevo.che.wisc.edu>
+
+	* blas/sgemm.f, blas/strsm.f, blas/ssyrk.f, blas/sscal.f,
+	blas/sgemv.f, blas/sdot.f: New files.
+
 2003-02-20  Paul Kienzle <pkienzle@users.sf.net>
 
 	* dassl/ddaslv.f: Fortran doesn't use ; in statements.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/blas/sgemm.f	Thu Feb 20 23:32:25 2003 +0000
@@ -0,0 +1,313 @@
+      SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
+     $                   BETA, C, LDC )
+*     .. Scalar Arguments ..
+      CHARACTER*1        TRANSA, TRANSB
+      INTEGER            M, N, K, LDA, LDB, LDC
+      REAL               ALPHA, BETA
+*     .. Array Arguments ..
+      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  SGEMM  performs one of the matrix-matrix operations
+*
+*     C := alpha*op( A )*op( B ) + beta*C,
+*
+*  where  op( X ) is one of
+*
+*     op( X ) = X   or   op( X ) = X',
+*
+*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
+*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
+*
+*  Parameters
+*  ==========
+*
+*  TRANSA - CHARACTER*1.
+*           On entry, TRANSA specifies the form of op( A ) to be used in
+*           the matrix multiplication as follows:
+*
+*              TRANSA = 'N' or 'n',  op( A ) = A.
+*
+*              TRANSA = 'T' or 't',  op( A ) = A'.
+*
+*              TRANSA = 'C' or 'c',  op( A ) = A'.
+*
+*           Unchanged on exit.
+*
+*  TRANSB - CHARACTER*1.
+*           On entry, TRANSB specifies the form of op( B ) to be used in
+*           the matrix multiplication as follows:
+*
+*              TRANSB = 'N' or 'n',  op( B ) = B.
+*
+*              TRANSB = 'T' or 't',  op( B ) = B'.
+*
+*              TRANSB = 'C' or 'c',  op( B ) = B'.
+*
+*           Unchanged on exit.
+*
+*  M      - INTEGER.
+*           On entry,  M  specifies  the number  of rows  of the  matrix
+*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
+*           Unchanged on exit.
+*
+*  N      - INTEGER.
+*           On entry,  N  specifies the number  of columns of the matrix
+*           op( B ) and the number of columns of the matrix C. N must be
+*           at least zero.
+*           Unchanged on exit.
+*
+*  K      - INTEGER.
+*           On entry,  K  specifies  the number of columns of the matrix
+*           op( A ) and the number of rows of the matrix op( B ). K must
+*           be at least  zero.
+*           Unchanged on exit.
+*
+*  ALPHA  - REAL            .
+*           On entry, ALPHA specifies the scalar alpha.
+*           Unchanged on exit.
+*
+*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
+*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
+*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
+*           part of the array  A  must contain the matrix  A,  otherwise
+*           the leading  k by m  part of the array  A  must contain  the
+*           matrix A.
+*           Unchanged on exit.
+*
+*  LDA    - INTEGER.
+*           On entry, LDA specifies the first dimension of A as declared
+*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
+*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
+*           least  max( 1, k ).
+*           Unchanged on exit.
+*
+*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
+*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
+*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
+*           part of the array  B  must contain the matrix  B,  otherwise
+*           the leading  n by k  part of the array  B  must contain  the
+*           matrix B.
+*           Unchanged on exit.
+*
+*  LDB    - INTEGER.
+*           On entry, LDB specifies the first dimension of B as declared
+*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
+*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
+*           least  max( 1, n ).
+*           Unchanged on exit.
+*
+*  BETA   - REAL            .
+*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
+*           supplied as zero then C need not be set on input.
+*           Unchanged on exit.
+*
+*  C      - REAL             array of DIMENSION ( LDC, n ).
+*           Before entry, the leading  m by n  part of the array  C must
+*           contain the matrix  C,  except when  beta  is zero, in which
+*           case C need not be set on entry.
+*           On exit, the array  C  is overwritten by the  m by n  matrix
+*           ( alpha*op( A )*op( B ) + beta*C ).
+*
+*  LDC    - INTEGER.
+*           On entry, LDC specifies the first dimension of C as declared
+*           in  the  calling  (sub)  program.   LDC  must  be  at  least
+*           max( 1, m ).
+*           Unchanged on exit.
+*
+*
+*  Level 3 Blas routine.
+*
+*  -- Written on 8-February-1989.
+*     Jack Dongarra, Argonne National Laboratory.
+*     Iain Duff, AERE Harwell.
+*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
+*     Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX
+*     .. Local Scalars ..
+      LOGICAL            NOTA, NOTB
+      INTEGER            I, INFO, J, L, NCOLA, NROWA, NROWB
+      REAL               TEMP
+*     .. Parameters ..
+      REAL               ONE         , ZERO
+      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+*     ..
+*     .. Executable Statements ..
+*
+*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
+*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
+*     and  columns of  A  and the  number of  rows  of  B  respectively.
+*
+      NOTA  = LSAME( TRANSA, 'N' )
+      NOTB  = LSAME( TRANSB, 'N' )
+      IF( NOTA )THEN
+         NROWA = M
+         NCOLA = K
+      ELSE
+         NROWA = K
+         NCOLA = M
+      END IF
+      IF( NOTB )THEN
+         NROWB = K
+      ELSE
+         NROWB = N
+      END IF
+*
+*     Test the input parameters.
+*
+      INFO = 0
+      IF(      ( .NOT.NOTA                 ).AND.
+     $         ( .NOT.LSAME( TRANSA, 'C' ) ).AND.
+     $         ( .NOT.LSAME( TRANSA, 'T' ) )      )THEN
+         INFO = 1
+      ELSE IF( ( .NOT.NOTB                 ).AND.
+     $         ( .NOT.LSAME( TRANSB, 'C' ) ).AND.
+     $         ( .NOT.LSAME( TRANSB, 'T' ) )      )THEN
+         INFO = 2
+      ELSE IF( M  .LT.0               )THEN
+         INFO = 3
+      ELSE IF( N  .LT.0               )THEN
+         INFO = 4
+      ELSE IF( K  .LT.0               )THEN
+         INFO = 5
+      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
+         INFO = 8
+      ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
+         INFO = 10
+      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
+         INFO = 13
+      END IF
+      IF( INFO.NE.0 )THEN
+         CALL XERBLA( 'SGEMM ', INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
+     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
+     $   RETURN
+*
+*     And if  alpha.eq.zero.
+*
+      IF( ALPHA.EQ.ZERO )THEN
+         IF( BETA.EQ.ZERO )THEN
+            DO 20, J = 1, N
+               DO 10, I = 1, M
+                  C( I, J ) = ZERO
+   10          CONTINUE
+   20       CONTINUE
+         ELSE
+            DO 40, J = 1, N
+               DO 30, I = 1, M
+                  C( I, J ) = BETA*C( I, J )
+   30          CONTINUE
+   40       CONTINUE
+         END IF
+         RETURN
+      END IF
+*
+*     Start the operations.
+*
+      IF( NOTB )THEN
+         IF( NOTA )THEN
+*
+*           Form  C := alpha*A*B + beta*C.
+*
+            DO 90, J = 1, N
+               IF( BETA.EQ.ZERO )THEN
+                  DO 50, I = 1, M
+                     C( I, J ) = ZERO
+   50             CONTINUE
+               ELSE IF( BETA.NE.ONE )THEN
+                  DO 60, I = 1, M
+                     C( I, J ) = BETA*C( I, J )
+   60             CONTINUE
+               END IF
+               DO 80, L = 1, K
+                  IF( B( L, J ).NE.ZERO )THEN
+                     TEMP = ALPHA*B( L, J )
+                     DO 70, I = 1, M
+                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
+   70                CONTINUE
+                  END IF
+   80          CONTINUE
+   90       CONTINUE
+         ELSE
+*
+*           Form  C := alpha*A'*B + beta*C
+*
+            DO 120, J = 1, N
+               DO 110, I = 1, M
+                  TEMP = ZERO
+                  DO 100, L = 1, K
+                     TEMP = TEMP + A( L, I )*B( L, J )
+  100             CONTINUE
+                  IF( BETA.EQ.ZERO )THEN
+                     C( I, J ) = ALPHA*TEMP
+                  ELSE
+                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
+                  END IF
+  110          CONTINUE
+  120       CONTINUE
+         END IF
+      ELSE
+         IF( NOTA )THEN
+*
+*           Form  C := alpha*A*B' + beta*C
+*
+            DO 170, J = 1, N
+               IF( BETA.EQ.ZERO )THEN
+                  DO 130, I = 1, M
+                     C( I, J ) = ZERO
+  130             CONTINUE
+               ELSE IF( BETA.NE.ONE )THEN
+                  DO 140, I = 1, M
+                     C( I, J ) = BETA*C( I, J )
+  140             CONTINUE
+               END IF
+               DO 160, L = 1, K
+                  IF( B( J, L ).NE.ZERO )THEN
+                     TEMP = ALPHA*B( J, L )
+                     DO 150, I = 1, M
+                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
+  150                CONTINUE
+                  END IF
+  160          CONTINUE
+  170       CONTINUE
+         ELSE
+*
+*           Form  C := alpha*A'*B' + beta*C
+*
+            DO 200, J = 1, N
+               DO 190, I = 1, M
+                  TEMP = ZERO
+                  DO 180, L = 1, K
+                     TEMP = TEMP + A( L, I )*B( J, L )
+  180             CONTINUE
+                  IF( BETA.EQ.ZERO )THEN
+                     C( I, J ) = ALPHA*TEMP
+                  ELSE
+                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
+                  END IF
+  190          CONTINUE
+  200       CONTINUE
+         END IF
+      END IF
+*
+      RETURN
+*
+*     End of SGEMM .
+*
+      END
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/blas/sgemv.f	Thu Feb 20 23:32:25 2003 +0000
@@ -0,0 +1,261 @@
+      SUBROUTINE SGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
+     $                   BETA, Y, INCY )
+*     .. Scalar Arguments ..
+      REAL               ALPHA, BETA
+      INTEGER            INCX, INCY, LDA, M, N
+      CHARACTER*1        TRANS
+*     .. Array Arguments ..
+      REAL               A( LDA, * ), X( * ), Y( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  SGEMV  performs one of the matrix-vector operations
+*
+*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
+*
+*  where alpha and beta are scalars, x and y are vectors and A is an
+*  m by n matrix.
+*
+*  Parameters
+*  ==========
+*
+*  TRANS  - CHARACTER*1.
+*           On entry, TRANS specifies the operation to be performed as
+*           follows:
+*
+*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
+*
+*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
+*
+*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
+*
+*           Unchanged on exit.
+*
+*  M      - INTEGER.
+*           On entry, M specifies the number of rows of the matrix A.
+*           M must be at least zero.
+*           Unchanged on exit.
+*
+*  N      - INTEGER.
+*           On entry, N specifies the number of columns of the matrix A.
+*           N must be at least zero.
+*           Unchanged on exit.
+*
+*  ALPHA  - REAL            .
+*           On entry, ALPHA specifies the scalar alpha.
+*           Unchanged on exit.
+*
+*  A      - REAL             array of DIMENSION ( LDA, n ).
+*           Before entry, the leading m by n part of the array A must
+*           contain the matrix of coefficients.
+*           Unchanged on exit.
+*
+*  LDA    - INTEGER.
+*           On entry, LDA specifies the first dimension of A as declared
+*           in the calling (sub) program. LDA must be at least
+*           max( 1, m ).
+*           Unchanged on exit.
+*
+*  X      - REAL             array of DIMENSION at least
+*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+*           and at least
+*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+*           Before entry, the incremented array X must contain the
+*           vector x.
+*           Unchanged on exit.
+*
+*  INCX   - INTEGER.
+*           On entry, INCX specifies the increment for the elements of
+*           X. INCX must not be zero.
+*           Unchanged on exit.
+*
+*  BETA   - REAL            .
+*           On entry, BETA specifies the scalar beta. When BETA is
+*           supplied as zero then Y need not be set on input.
+*           Unchanged on exit.
+*
+*  Y      - REAL             array of DIMENSION at least
+*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+*           and at least
+*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+*           Before entry with BETA non-zero, the incremented array Y
+*           must contain the vector y. On exit, Y is overwritten by the
+*           updated vector y.
+*
+*  INCY   - INTEGER.
+*           On entry, INCY specifies the increment for the elements of
+*           Y. INCY must not be zero.
+*           Unchanged on exit.
+*
+*
+*  Level 2 Blas routine.
+*
+*  -- Written on 22-October-1986.
+*     Jack Dongarra, Argonne National Lab.
+*     Jeremy Du Croz, Nag Central Office.
+*     Sven Hammarling, Nag Central Office.
+*     Richard Hanson, Sandia National Labs.
+*
+*
+*     .. Parameters ..
+      REAL               ONE         , ZERO
+      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+*     .. Local Scalars ..
+      REAL               TEMP
+      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      INFO = 0
+      IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
+     $         .NOT.LSAME( TRANS, 'T' ).AND.
+     $         .NOT.LSAME( TRANS, 'C' )      )THEN
+         INFO = 1
+      ELSE IF( M.LT.0 )THEN
+         INFO = 2
+      ELSE IF( N.LT.0 )THEN
+         INFO = 3
+      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
+         INFO = 6
+      ELSE IF( INCX.EQ.0 )THEN
+         INFO = 8
+      ELSE IF( INCY.EQ.0 )THEN
+         INFO = 11
+      END IF
+      IF( INFO.NE.0 )THEN
+         CALL XERBLA( 'SGEMV ', INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
+     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
+     $   RETURN
+*
+*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
+*     up the start points in  X  and  Y.
+*
+      IF( LSAME( TRANS, 'N' ) )THEN
+         LENX = N
+         LENY = M
+      ELSE
+         LENX = M
+         LENY = N
+      END IF
+      IF( INCX.GT.0 )THEN
+         KX = 1
+      ELSE
+         KX = 1 - ( LENX - 1 )*INCX
+      END IF
+      IF( INCY.GT.0 )THEN
+         KY = 1
+      ELSE
+         KY = 1 - ( LENY - 1 )*INCY
+      END IF
+*
+*     Start the operations. In this version the elements of A are
+*     accessed sequentially with one pass through A.
+*
+*     First form  y := beta*y.
+*
+      IF( BETA.NE.ONE )THEN
+         IF( INCY.EQ.1 )THEN
+            IF( BETA.EQ.ZERO )THEN
+               DO 10, I = 1, LENY
+                  Y( I ) = ZERO
+   10          CONTINUE
+            ELSE
+               DO 20, I = 1, LENY
+                  Y( I ) = BETA*Y( I )
+   20          CONTINUE
+            END IF
+         ELSE
+            IY = KY
+            IF( BETA.EQ.ZERO )THEN
+               DO 30, I = 1, LENY
+                  Y( IY ) = ZERO
+                  IY      = IY   + INCY
+   30          CONTINUE
+            ELSE
+               DO 40, I = 1, LENY
+                  Y( IY ) = BETA*Y( IY )
+                  IY      = IY           + INCY
+   40          CONTINUE
+            END IF
+         END IF
+      END IF
+      IF( ALPHA.EQ.ZERO )
+     $   RETURN
+      IF( LSAME( TRANS, 'N' ) )THEN
+*
+*        Form  y := alpha*A*x + y.
+*
+         JX = KX
+         IF( INCY.EQ.1 )THEN
+            DO 60, J = 1, N
+               IF( X( JX ).NE.ZERO )THEN
+                  TEMP = ALPHA*X( JX )
+                  DO 50, I = 1, M
+                     Y( I ) = Y( I ) + TEMP*A( I, J )
+   50             CONTINUE
+               END IF
+               JX = JX + INCX
+   60       CONTINUE
+         ELSE
+            DO 80, J = 1, N
+               IF( X( JX ).NE.ZERO )THEN
+                  TEMP = ALPHA*X( JX )
+                  IY   = KY
+                  DO 70, I = 1, M
+                     Y( IY ) = Y( IY ) + TEMP*A( I, J )
+                     IY      = IY      + INCY
+   70             CONTINUE
+               END IF
+               JX = JX + INCX
+   80       CONTINUE
+         END IF
+      ELSE
+*
+*        Form  y := alpha*A'*x + y.
+*
+         JY = KY
+         IF( INCX.EQ.1 )THEN
+            DO 100, J = 1, N
+               TEMP = ZERO
+               DO 90, I = 1, M
+                  TEMP = TEMP + A( I, J )*X( I )
+   90          CONTINUE
+               Y( JY ) = Y( JY ) + ALPHA*TEMP
+               JY      = JY      + INCY
+  100       CONTINUE
+         ELSE
+            DO 120, J = 1, N
+               TEMP = ZERO
+               IX   = KX
+               DO 110, I = 1, M
+                  TEMP = TEMP + A( I, J )*X( IX )
+                  IX   = IX   + INCX
+  110          CONTINUE
+               Y( JY ) = Y( JY ) + ALPHA*TEMP
+               JY      = JY      + INCY
+  120       CONTINUE
+         END IF
+      END IF
+*
+      RETURN
+*
+*     End of SGEMV .
+*
+      END
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/blas/sscal.f	Thu Feb 20 23:32:25 2003 +0000
@@ -0,0 +1,43 @@
+      subroutine sscal(n,sa,sx,incx)
+c
+c     scales a vector by a constant.
+c     uses unrolled loops for increment equal to 1.
+c     jack dongarra, linpack, 3/11/78.
+c     modified 3/93 to return if incx .le. 0.
+c     modified 12/3/93, array(1) declarations changed to array(*)
+c
+      real sa,sx(*)
+      integer i,incx,m,mp1,n,nincx
+c
+      if( n.le.0 .or. incx.le.0 )return
+      if(incx.eq.1)go to 20
+c
+c        code for increment not equal to 1
+c
+      nincx = n*incx
+      do 10 i = 1,nincx,incx
+        sx(i) = sa*sx(i)
+   10 continue
+      return
+c
+c        code for increment equal to 1
+c
+c
+c        clean-up loop
+c
+   20 m = mod(n,5)
+      if( m .eq. 0 ) go to 40
+      do 30 i = 1,m
+        sx(i) = sa*sx(i)
+   30 continue
+      if( n .lt. 5 ) return
+   40 mp1 = m + 1
+      do 50 i = mp1,n,5
+        sx(i) = sa*sx(i)
+        sx(i + 1) = sa*sx(i + 1)
+        sx(i + 2) = sa*sx(i + 2)
+        sx(i + 3) = sa*sx(i + 3)
+        sx(i + 4) = sa*sx(i + 4)
+   50 continue
+      return
+      end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/blas/ssyrk.f	Thu Feb 20 23:32:25 2003 +0000
@@ -0,0 +1,294 @@
+      SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA,
+     $                   BETA, C, LDC )
+*     .. Scalar Arguments ..
+      CHARACTER*1        UPLO, TRANS
+      INTEGER            N, K, LDA, LDC
+      REAL               ALPHA, BETA
+*     .. Array Arguments ..
+      REAL               A( LDA, * ), C( LDC, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  SSYRK  performs one of the symmetric rank k operations
+*
+*     C := alpha*A*A' + beta*C,
+*
+*  or
+*
+*     C := alpha*A'*A + beta*C,
+*
+*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
+*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
+*  in the second case.
+*
+*  Parameters
+*  ==========
+*
+*  UPLO   - CHARACTER*1.
+*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
+*           triangular  part  of the  array  C  is to be  referenced  as
+*           follows:
+*
+*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
+*                                  is to be referenced.
+*
+*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
+*                                  is to be referenced.
+*
+*           Unchanged on exit.
+*
+*  TRANS  - CHARACTER*1.
+*           On entry,  TRANS  specifies the operation to be performed as
+*           follows:
+*
+*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
+*
+*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
+*
+*              TRANS = 'C' or 'c'   C := alpha*A'*A + beta*C.
+*
+*           Unchanged on exit.
+*
+*  N      - INTEGER.
+*           On entry,  N specifies the order of the matrix C.  N must be
+*           at least zero.
+*           Unchanged on exit.
+*
+*  K      - INTEGER.
+*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
+*           of  columns   of  the   matrix   A,   and  on   entry   with
+*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
+*           of rows of the matrix  A.  K must be at least zero.
+*           Unchanged on exit.
+*
+*  ALPHA  - REAL            .
+*           On entry, ALPHA specifies the scalar alpha.
+*           Unchanged on exit.
+*
+*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
+*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
+*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
+*           part of the array  A  must contain the matrix  A,  otherwise
+*           the leading  k by n  part of the array  A  must contain  the
+*           matrix A.
+*           Unchanged on exit.
+*
+*  LDA    - INTEGER.
+*           On entry, LDA specifies the first dimension of A as declared
+*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
+*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
+*           be at least  max( 1, k ).
+*           Unchanged on exit.
+*
+*  BETA   - REAL            .
+*           On entry, BETA specifies the scalar beta.
+*           Unchanged on exit.
+*
+*  C      - REAL             array of DIMENSION ( LDC, n ).
+*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
+*           upper triangular part of the array C must contain the upper
+*           triangular part  of the  symmetric matrix  and the strictly
+*           lower triangular part of C is not referenced.  On exit, the
+*           upper triangular part of the array  C is overwritten by the
+*           upper triangular part of the updated matrix.
+*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
+*           lower triangular part of the array C must contain the lower
+*           triangular part  of the  symmetric matrix  and the strictly
+*           upper triangular part of C is not referenced.  On exit, the
+*           lower triangular part of the array  C is overwritten by the
+*           lower triangular part of the updated matrix.
+*
+*  LDC    - INTEGER.
+*           On entry, LDC specifies the first dimension of C as declared
+*           in  the  calling  (sub)  program.   LDC  must  be  at  least
+*           max( 1, n ).
+*           Unchanged on exit.
+*
+*
+*  Level 3 Blas routine.
+*
+*  -- Written on 8-February-1989.
+*     Jack Dongarra, Argonne National Laboratory.
+*     Iain Duff, AERE Harwell.
+*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
+*     Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX
+*     .. Local Scalars ..
+      LOGICAL            UPPER
+      INTEGER            I, INFO, J, L, NROWA
+      REAL               TEMP
+*     .. Parameters ..
+      REAL               ONE ,         ZERO
+      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      IF( LSAME( TRANS, 'N' ) )THEN
+         NROWA = N
+      ELSE
+         NROWA = K
+      END IF
+      UPPER = LSAME( UPLO, 'U' )
+*
+      INFO = 0
+      IF(      ( .NOT.UPPER               ).AND.
+     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
+         INFO = 1
+      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
+     $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.
+     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
+         INFO = 2
+      ELSE IF( N  .LT.0               )THEN
+         INFO = 3
+      ELSE IF( K  .LT.0               )THEN
+         INFO = 4
+      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
+         INFO = 7
+      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
+         INFO = 10
+      END IF
+      IF( INFO.NE.0 )THEN
+         CALL XERBLA( 'SSYRK ', INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF( ( N.EQ.0 ).OR.
+     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
+     $   RETURN
+*
+*     And when  alpha.eq.zero.
+*
+      IF( ALPHA.EQ.ZERO )THEN
+         IF( UPPER )THEN
+            IF( BETA.EQ.ZERO )THEN
+               DO 20, J = 1, N
+                  DO 10, I = 1, J
+                     C( I, J ) = ZERO
+   10             CONTINUE
+   20          CONTINUE
+            ELSE
+               DO 40, J = 1, N
+                  DO 30, I = 1, J
+                     C( I, J ) = BETA*C( I, J )
+   30             CONTINUE
+   40          CONTINUE
+            END IF
+         ELSE
+            IF( BETA.EQ.ZERO )THEN
+               DO 60, J = 1, N
+                  DO 50, I = J, N
+                     C( I, J ) = ZERO
+   50             CONTINUE
+   60          CONTINUE
+            ELSE
+               DO 80, J = 1, N
+                  DO 70, I = J, N
+                     C( I, J ) = BETA*C( I, J )
+   70             CONTINUE
+   80          CONTINUE
+            END IF
+         END IF
+         RETURN
+      END IF
+*
+*     Start the operations.
+*
+      IF( LSAME( TRANS, 'N' ) )THEN
+*
+*        Form  C := alpha*A*A' + beta*C.
+*
+         IF( UPPER )THEN
+            DO 130, J = 1, N
+               IF( BETA.EQ.ZERO )THEN
+                  DO 90, I = 1, J
+                     C( I, J ) = ZERO
+   90             CONTINUE
+               ELSE IF( BETA.NE.ONE )THEN
+                  DO 100, I = 1, J
+                     C( I, J ) = BETA*C( I, J )
+  100             CONTINUE
+               END IF
+               DO 120, L = 1, K
+                  IF( A( J, L ).NE.ZERO )THEN
+                     TEMP = ALPHA*A( J, L )
+                     DO 110, I = 1, J
+                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
+  110                CONTINUE
+                  END IF
+  120          CONTINUE
+  130       CONTINUE
+         ELSE
+            DO 180, J = 1, N
+               IF( BETA.EQ.ZERO )THEN
+                  DO 140, I = J, N
+                     C( I, J ) = ZERO
+  140             CONTINUE
+               ELSE IF( BETA.NE.ONE )THEN
+                  DO 150, I = J, N
+                     C( I, J ) = BETA*C( I, J )
+  150             CONTINUE
+               END IF
+               DO 170, L = 1, K
+                  IF( A( J, L ).NE.ZERO )THEN
+                     TEMP      = ALPHA*A( J, L )
+                     DO 160, I = J, N
+                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
+  160                CONTINUE
+                  END IF
+  170          CONTINUE
+  180       CONTINUE
+         END IF
+      ELSE
+*
+*        Form  C := alpha*A'*A + beta*C.
+*
+         IF( UPPER )THEN
+            DO 210, J = 1, N
+               DO 200, I = 1, J
+                  TEMP = ZERO
+                  DO 190, L = 1, K
+                     TEMP = TEMP + A( L, I )*A( L, J )
+  190             CONTINUE
+                  IF( BETA.EQ.ZERO )THEN
+                     C( I, J ) = ALPHA*TEMP
+                  ELSE
+                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
+                  END IF
+  200          CONTINUE
+  210       CONTINUE
+         ELSE
+            DO 240, J = 1, N
+               DO 230, I = J, N
+                  TEMP = ZERO
+                  DO 220, L = 1, K
+                     TEMP = TEMP + A( L, I )*A( L, J )
+  220             CONTINUE
+                  IF( BETA.EQ.ZERO )THEN
+                     C( I, J ) = ALPHA*TEMP
+                  ELSE
+                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
+                  END IF
+  230          CONTINUE
+  240       CONTINUE
+         END IF
+      END IF
+*
+      RETURN
+*
+*     End of SSYRK .
+*
+      END
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/blas/strsm.f	Thu Feb 20 23:32:25 2003 +0000
@@ -0,0 +1,378 @@
+      SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
+     $                   B, LDB )
+*     .. Scalar Arguments ..
+      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
+      INTEGER            M, N, LDA, LDB
+      REAL               ALPHA
+*     .. Array Arguments ..
+      REAL               A( LDA, * ), B( LDB, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  STRSM  solves one of the matrix equations
+*
+*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
+*
+*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
+*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
+*
+*     op( A ) = A   or   op( A ) = A'.
+*
+*  The matrix X is overwritten on B.
+*
+*  Parameters
+*  ==========
+*
+*  SIDE   - CHARACTER*1.
+*           On entry, SIDE specifies whether op( A ) appears on the left
+*           or right of X as follows:
+*
+*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
+*
+*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
+*
+*           Unchanged on exit.
+*
+*  UPLO   - CHARACTER*1.
+*           On entry, UPLO specifies whether the matrix A is an upper or
+*           lower triangular matrix as follows:
+*
+*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
+*
+*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
+*
+*           Unchanged on exit.
+*
+*  TRANSA - CHARACTER*1.
+*           On entry, TRANSA specifies the form of op( A ) to be used in
+*           the matrix multiplication as follows:
+*
+*              TRANSA = 'N' or 'n'   op( A ) = A.
+*
+*              TRANSA = 'T' or 't'   op( A ) = A'.
+*
+*              TRANSA = 'C' or 'c'   op( A ) = A'.
+*
+*           Unchanged on exit.
+*
+*  DIAG   - CHARACTER*1.
+*           On entry, DIAG specifies whether or not A is unit triangular
+*           as follows:
+*
+*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
+*
+*              DIAG = 'N' or 'n'   A is not assumed to be unit
+*                                  triangular.
+*
+*           Unchanged on exit.
+*
+*  M      - INTEGER.
+*           On entry, M specifies the number of rows of B. M must be at
+*           least zero.
+*           Unchanged on exit.
+*
+*  N      - INTEGER.
+*           On entry, N specifies the number of columns of B.  N must be
+*           at least zero.
+*           Unchanged on exit.
+*
+*  ALPHA  - REAL            .
+*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
+*           zero then  A is not referenced and  B need not be set before
+*           entry.
+*           Unchanged on exit.
+*
+*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
+*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
+*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
+*           upper triangular part of the array  A must contain the upper
+*           triangular matrix  and the strictly lower triangular part of
+*           A is not referenced.
+*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
+*           lower triangular part of the array  A must contain the lower
+*           triangular matrix  and the strictly upper triangular part of
+*           A is not referenced.
+*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
+*           A  are not referenced either,  but are assumed to be  unity.
+*           Unchanged on exit.
+*
+*  LDA    - INTEGER.
+*           On entry, LDA specifies the first dimension of A as declared
+*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
+*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
+*           then LDA must be at least max( 1, n ).
+*           Unchanged on exit.
+*
+*  B      - REAL             array of DIMENSION ( LDB, n ).
+*           Before entry,  the leading  m by n part of the array  B must
+*           contain  the  right-hand  side  matrix  B,  and  on exit  is
+*           overwritten by the solution matrix  X.
+*
+*  LDB    - INTEGER.
+*           On entry, LDB specifies the first dimension of B as declared
+*           in  the  calling  (sub)  program.   LDB  must  be  at  least
+*           max( 1, m ).
+*           Unchanged on exit.
+*
+*
+*  Level 3 Blas routine.
+*
+*
+*  -- Written on 8-February-1989.
+*     Jack Dongarra, Argonne National Laboratory.
+*     Iain Duff, AERE Harwell.
+*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
+*     Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX
+*     .. Local Scalars ..
+      LOGICAL            LSIDE, NOUNIT, UPPER
+      INTEGER            I, INFO, J, K, NROWA
+      REAL               TEMP
+*     .. Parameters ..
+      REAL               ONE         , ZERO
+      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      LSIDE  = LSAME( SIDE  , 'L' )
+      IF( LSIDE )THEN
+         NROWA = M
+      ELSE
+         NROWA = N
+      END IF
+      NOUNIT = LSAME( DIAG  , 'N' )
+      UPPER  = LSAME( UPLO  , 'U' )
+*
+      INFO   = 0
+      IF(      ( .NOT.LSIDE                ).AND.
+     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
+         INFO = 1
+      ELSE IF( ( .NOT.UPPER                ).AND.
+     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
+         INFO = 2
+      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
+     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
+     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
+         INFO = 3
+      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
+     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
+         INFO = 4
+      ELSE IF( M  .LT.0               )THEN
+         INFO = 5
+      ELSE IF( N  .LT.0               )THEN
+         INFO = 6
+      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
+         INFO = 9
+      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
+         INFO = 11
+      END IF
+      IF( INFO.NE.0 )THEN
+         CALL XERBLA( 'STRSM ', INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF( N.EQ.0 )
+     $   RETURN
+*
+*     And when  alpha.eq.zero.
+*
+      IF( ALPHA.EQ.ZERO )THEN
+         DO 20, J = 1, N
+            DO 10, I = 1, M
+               B( I, J ) = ZERO
+   10       CONTINUE
+   20    CONTINUE
+         RETURN
+      END IF
+*
+*     Start the operations.
+*
+      IF( LSIDE )THEN
+         IF( LSAME( TRANSA, 'N' ) )THEN
+*
+*           Form  B := alpha*inv( A )*B.
+*
+            IF( UPPER )THEN
+               DO 60, J = 1, N
+                  IF( ALPHA.NE.ONE )THEN
+                     DO 30, I = 1, M
+                        B( I, J ) = ALPHA*B( I, J )
+   30                CONTINUE
+                  END IF
+                  DO 50, K = M, 1, -1
+                     IF( B( K, J ).NE.ZERO )THEN
+                        IF( NOUNIT )
+     $                     B( K, J ) = B( K, J )/A( K, K )
+                        DO 40, I = 1, K - 1
+                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
+   40                   CONTINUE
+                     END IF
+   50             CONTINUE
+   60          CONTINUE
+            ELSE
+               DO 100, J = 1, N
+                  IF( ALPHA.NE.ONE )THEN
+                     DO 70, I = 1, M
+                        B( I, J ) = ALPHA*B( I, J )
+   70                CONTINUE
+                  END IF
+                  DO 90 K = 1, M
+                     IF( B( K, J ).NE.ZERO )THEN
+                        IF( NOUNIT )
+     $                     B( K, J ) = B( K, J )/A( K, K )
+                        DO 80, I = K + 1, M
+                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
+   80                   CONTINUE
+                     END IF
+   90             CONTINUE
+  100          CONTINUE
+            END IF
+         ELSE
+*
+*           Form  B := alpha*inv( A' )*B.
+*
+            IF( UPPER )THEN
+               DO 130, J = 1, N
+                  DO 120, I = 1, M
+                     TEMP = ALPHA*B( I, J )
+                     DO 110, K = 1, I - 1
+                        TEMP = TEMP - A( K, I )*B( K, J )
+  110                CONTINUE
+                     IF( NOUNIT )
+     $                  TEMP = TEMP/A( I, I )
+                     B( I, J ) = TEMP
+  120             CONTINUE
+  130          CONTINUE
+            ELSE
+               DO 160, J = 1, N
+                  DO 150, I = M, 1, -1
+                     TEMP = ALPHA*B( I, J )
+                     DO 140, K = I + 1, M
+                        TEMP = TEMP - A( K, I )*B( K, J )
+  140                CONTINUE
+                     IF( NOUNIT )
+     $                  TEMP = TEMP/A( I, I )
+                     B( I, J ) = TEMP
+  150             CONTINUE
+  160          CONTINUE
+            END IF
+         END IF
+      ELSE
+         IF( LSAME( TRANSA, 'N' ) )THEN
+*
+*           Form  B := alpha*B*inv( A ).
+*
+            IF( UPPER )THEN
+               DO 210, J = 1, N
+                  IF( ALPHA.NE.ONE )THEN
+                     DO 170, I = 1, M
+                        B( I, J ) = ALPHA*B( I, J )
+  170                CONTINUE
+                  END IF
+                  DO 190, K = 1, J - 1
+                     IF( A( K, J ).NE.ZERO )THEN
+                        DO 180, I = 1, M
+                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
+  180                   CONTINUE
+                     END IF
+  190             CONTINUE
+                  IF( NOUNIT )THEN
+                     TEMP = ONE/A( J, J )
+                     DO 200, I = 1, M
+                        B( I, J ) = TEMP*B( I, J )
+  200                CONTINUE
+                  END IF
+  210          CONTINUE
+            ELSE
+               DO 260, J = N, 1, -1
+                  IF( ALPHA.NE.ONE )THEN
+                     DO 220, I = 1, M
+                        B( I, J ) = ALPHA*B( I, J )
+  220                CONTINUE
+                  END IF
+                  DO 240, K = J + 1, N
+                     IF( A( K, J ).NE.ZERO )THEN
+                        DO 230, I = 1, M
+                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
+  230                   CONTINUE
+                     END IF
+  240             CONTINUE
+                  IF( NOUNIT )THEN
+                     TEMP = ONE/A( J, J )
+                     DO 250, I = 1, M
+                       B( I, J ) = TEMP*B( I, J )
+  250                CONTINUE
+                  END IF
+  260          CONTINUE
+            END IF
+         ELSE
+*
+*           Form  B := alpha*B*inv( A' ).
+*
+            IF( UPPER )THEN
+               DO 310, K = N, 1, -1
+                  IF( NOUNIT )THEN
+                     TEMP = ONE/A( K, K )
+                     DO 270, I = 1, M
+                        B( I, K ) = TEMP*B( I, K )
+  270                CONTINUE
+                  END IF
+                  DO 290, J = 1, K - 1
+                     IF( A( J, K ).NE.ZERO )THEN
+                        TEMP = A( J, K )
+                        DO 280, I = 1, M
+                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
+  280                   CONTINUE
+                     END IF
+  290             CONTINUE
+                  IF( ALPHA.NE.ONE )THEN
+                     DO 300, I = 1, M
+                        B( I, K ) = ALPHA*B( I, K )
+  300                CONTINUE
+                  END IF
+  310          CONTINUE
+            ELSE
+               DO 360, K = 1, N
+                  IF( NOUNIT )THEN
+                     TEMP = ONE/A( K, K )
+                     DO 320, I = 1, M
+                        B( I, K ) = TEMP*B( I, K )
+  320                CONTINUE
+                  END IF
+                  DO 340, J = K + 1, N
+                     IF( A( J, K ).NE.ZERO )THEN
+                        TEMP = A( J, K )
+                        DO 330, I = 1, M
+                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
+  330                   CONTINUE
+                     END IF
+  340             CONTINUE
+                  IF( ALPHA.NE.ONE )THEN
+                     DO 350, I = 1, M
+                        B( I, K ) = ALPHA*B( I, K )
+  350                CONTINUE
+                  END IF
+  360          CONTINUE
+            END IF
+         END IF
+      END IF
+*
+      RETURN
+*
+*     End of STRSM .
+*
+      END