changeset 19087:168c0aa9bb05

Added all the files related with ilu.m and ichol.m functions. * ichol0.cc: New file added to libinterp/dldfcn * icholt.cc: New file added to libinterp/dldfcn * ilu0.cc: New file added to libinterp/dldfcn * iluc.cc: New file added to libinterp/dldfcn * ilutp.cc: New file added to libinterp/dldfcn * ichol.m: New file added to libinterp/dldfcn. Wrapper for ichol0 and icholt. * ilu.m: New file added to libinterp/dldfcn. Wrapper for ilu0, iluc and ilutp. * module-files: Added the above files to allow their compilation.
author Eduardo Ramos (edu159) <eduradical951@gmail.com>
date Tue, 12 Aug 2014 15:58:18 +0100
parents bb0c5e182c12
children df64071e538c
files libinterp/dldfcn/ichol0.cc libinterp/dldfcn/icholt.cc libinterp/dldfcn/ilu0.cc libinterp/dldfcn/iluc.cc libinterp/dldfcn/ilutp.cc libinterp/dldfcn/module-files scripts/sparse/ichol.m scripts/sparse/ilu.m
diffstat 8 files changed, 3020 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libinterp/dldfcn/ichol0.cc	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,363 @@
+/**
+ * Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+ *
+ * This file is part of Octave.
+ *
+ * Octave is free software; you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation; either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * Octave; see the file COPYING.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "defun-dld.h"
+#include "parse.h"
+
+// Secondary functions specialiced for complex or real case used
+// in icholt algorithms.
+template < typename T > inline T
+ichol_mult_complex (T a, T b)
+{
+  b.imag (-std::imag (b));
+  return a * b;
+}
+
+template < typename T > inline bool
+ichol_checkpivot_complex (T pivot)
+{
+  if (pivot.imag () != 0)
+    {
+      error ("ichol0: Non-real pivot encountered. \
+              The matrix must be hermitian.");
+      return false;
+    }
+  else if (pivot.real () < 0)
+    {
+      error ("ichol0: Non-positive pivot encountered.");
+      return false;
+    }
+  return true;
+
+}
+
+template < typename T > inline bool
+ichol_checkpivot_real (T pivot)
+{
+  if (pivot < T(0))
+    {
+      error ("ichol0: Non-positive pivot encountered.");
+      return false;
+    }
+  return true;
+}
+
+template < typename T> inline T 
+ichol_mult_real (T a, T b)
+{
+  return a * b;
+}
+
+
+template <typename octave_matrix_t, typename T, T (*ichol_mult) (T, T), 
+          bool (*ichol_checkpivot) (T)>
+void ichol_0 (octave_matrix_t& sm, const std::string michol = "off") 
+{
+
+  const octave_idx_type n = sm.cols ();
+  octave_idx_type j1, jend, j2, jrow, jjrow, j, jw, i, k, jj, Llist_len, r;
+
+  T tl;
+  char opt;
+  enum {OFF, ON};
+  if (michol == "on")
+    opt = ON;
+  else
+    opt = OFF;
+
+  // Input matrix pointers
+  octave_idx_type* cidx = sm.cidx ();
+  octave_idx_type* ridx = sm.ridx ();
+  T* data = sm.data ();
+
+  // Working arrays
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, Lfirst, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, Llist, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, iw, n);
+  OCTAVE_LOCAL_BUFFER (T, dropsums, n);
+
+  // Initialise working arrays
+  for (i = 0; i < n; i++)
+    {
+      iw[i] = -1;
+      Llist[i] = -1;
+      Lfirst[i] = -1;
+      dropsums[i] = 0;
+    }
+
+  // Main loop 
+  for (k = 0; k < n; k++)
+    {
+      j1 = cidx[k];
+      j2 = cidx[k+1];
+      for (j = j1; j < j2; j++)
+        iw[ridx[j]] = j;
+
+      jrow = Llist [k];
+      // Iterate over each non-zero element in the actual row.
+      while (jrow != -1) 
+        {
+          jjrow = Lfirst[jrow];
+          jend = cidx[jrow+1];
+          for (jj = jjrow; jj < jend; jj++)
+            {
+              r = ridx[jj];
+              jw = iw[r];
+              tl = ichol_mult (data[jj], data[jjrow]);
+              if (jw != -1)
+                data[jw] -= tl;
+              else
+                // Because of simetry of the matrix we know the drops
+                // in the column r are also in the column k.
+                if (opt == ON)
+                  {
+                    dropsums[r] -= tl;
+                    dropsums[k] -= tl;
+                  }
+            }
+          // Update the linked list and the first entry of the
+          // actual column.
+          if ((jjrow + 1) < jend)
+            {
+              Lfirst[jrow]++;
+              j = jrow;
+              jrow = Llist[jrow];
+              Llist[j] = Llist[ridx[Lfirst[j]]];
+              Llist[ridx[Lfirst[j]]] = j;
+            }
+          else
+            jrow = Llist[jrow];
+        }
+
+      if (opt == ON)
+        data[j1] += dropsums[k];
+
+      if (ridx[j1] != k)
+        {
+          error ("ichol0: There is a pivot equal to zero.");
+          break;
+        }
+
+      if (!ichol_checkpivot (data[j1]))
+        break;
+
+      data[cidx[k]] = std::sqrt (data[j1]);
+
+      // Update Llist and Lfirst with the k-column information.
+      // Also scale the column elements by the pivot and reset 
+      // the working array iw.
+      if (k < (n - 1)) 
+        {
+          iw[ridx[j1]] = -1;
+          for(i = j1 + 1; i < j2; i++)
+            {
+              iw[ridx[i]] = -1;
+              data[i] /=  data[j1];
+            }
+          Lfirst[k] = j1;
+          if ((Lfirst[k] + 1) < j2)
+            {
+              Lfirst[k]++;
+              jjrow = ridx[Lfirst[k]];
+              Llist[k] = Llist[jjrow];
+              Llist[jjrow] = k;
+            }
+        }
+    }
+}
+
+DEFUN_DLD (ichol0, args, nargout, "-*- texinfo -*-\n\
+@deftypefn  {Loadable Function} {@var{L} =} ichol0 (@var{A}, @var{michol})\n\
+\n\
+Computes the no fill Incomplete Cholesky factorization [IC(0)] of A \
+which must be an square hermitian matrix in the complex case and a symmetric \
+positive definite matrix in the real one. \
+\n\
+\n\
+@code{@var{L} = ichol0 (@var{A}, @var{michol})} \
+computes the IC(0) of @var{A}, such that @code{@var{L} * @var{L}'} which \
+is an approximation of the square sparse hermitian matrix @var{A}. \
+The parameter @var{michol} decides whether the Modified IC(0) should \
+be performed. This compensates the main diagonal of \
+@var{L}, such that @code{@var{A} * @var{e} = @var{L} * @var{L}' * @var{e}} \
+with @code{@var{e} = ones (size (@var{A}, 2), 1))} holds. \n\
+\n\
+For more information about the algorithms themselves see:\n\
+\n\
+[1] Saad, Yousef. \"Preconditioning Techniques.\" Iterative Methods for Sparse Linear \
+Systems. PWS Publishing Company, 1996. \
+\n\
+@seealso{ichol, icholt, chol, ilu}\n\
+@end deftypefn")
+
+{
+  octave_value_list retval;
+
+  int nargin = args.length ();
+  std::string michol = "off";
+ 
+
+  if (nargout > 1 || nargin < 1 || nargin > 2)
+    {
+      print_usage ();
+      return retval;
+    }
+
+  if (args (0).is_scalar_type () || !args (0).is_sparse_type ())
+    error ("ichol0: 1. parameter must be a sparse square matrix.");
+
+  if (args (0).is_empty ())
+    {
+      retval (0) = octave_value (SparseMatrix ());
+      return retval;
+    }
+
+
+  if (nargin == 2)
+    {
+      michol = args (1).string_value ();
+      if (error_state || ! (michol == "on" || michol == "off"))
+        error ("ichol0: 2. parameter must be 'on' or 'off' character string.");
+    }
+
+
+  if (!error_state)
+    {
+      // In ICHOL0 algorithm the zero-pattern of the input matrix is preserved so
+      // it's structure does not change during the algorithm. The same input
+      // matrix is used to build the output matrix due to that fact.
+      octave_value_list param_list;
+      if (!args (0).is_complex_type ())
+        {
+          SparseMatrix sm = args (0).sparse_matrix_value ();
+          param_list.append (sm);
+          sm = feval ("tril", param_list)(0).sparse_matrix_value (); 
+          ichol_0 <SparseMatrix, double, ichol_mult_real, ichol_checkpivot_real> (sm, michol);
+          if (! error_state)
+            retval (0) = octave_value (sm);
+        }
+      else
+        {
+          SparseComplexMatrix sm = args (0).sparse_complex_matrix_value ();
+          param_list.append (sm);
+          sm = feval ("tril", param_list) (0).sparse_complex_matrix_value (); 
+          ichol_0 <SparseComplexMatrix, Complex, ichol_mult_complex, ichol_checkpivot_complex> (sm, michol);
+          if (! error_state)
+            retval (0) = octave_value (sm);
+        }
+
+    }
+
+  return retval;
+}
+
+/*
+%% Real matrices
+%!shared A_1, A_2, A_3, A_4, A_5
+%! A_1 = [ 0.37, -0.05,  -0.05,  -0.07;
+%!        -0.05,  0.116,  0.0,   -0.05;
+%!        -0.05,  0.0,    0.116, -0.05;
+%!        -0.07, -0.05,  -0.05,   0.202];
+%! A_1 = sparse(A_1);
+%!
+%! A_2 = gallery ('poisson', 30);
+%!
+%! A_3 = gallery ('tridiag', 50);
+%!
+%! nx = 400; ny = 200;
+%! hx = 1 / (nx + 1); hy = 1 / (ny + 1);
+%! Dxx = spdiags ([ones(nx, 1), -2 * ones(nx, 1), ones(nx, 1)], [-1 0 1 ], nx, nx) / (hx ^ 2);
+%! Dyy = spdiags ([ones(ny, 1), -2 * ones(ny, 1), ones(ny, 1)], [-1 0 1 ], ny, ny) / (hy ^ 2);
+%! A_4 = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
+%! A_4 = sparse (A_4);
+%!
+%! A_5 = [ 0.37, -0.05,          -0.05,  -0.07;
+%!        -0.05,  0.116,          0.0,   -0.05 + 0.05i;
+%!        -0.05,  0.0,            0.116, -0.05;
+%!        -0.07, -0.05 - 0.05i,  -0.05,   0.202];
+%! A_5 = sparse(A_5);
+%! A_6 = [ 0.37,    -0.05 - i, -0.05,  -0.07;
+%!        -0.05 + i, 0.116,     0.0,   -0.05;
+%!        -0.05,     0.0,       0.116, -0.05;
+%!        -0.07,    -0.05,     -0.05,   0.202];
+%! A_6 = sparse(A_6);
+%! A_7 = A_5;
+%! A_7(1) = 2i;
+%!
+%% Test input
+%!test
+%!error ichol0 ([]);
+%!error ichol0 ([],[]);
+%!error [~,~] = ichol0 ([],[],[]);
+%!error [L] = ichol0 ([], 'foo');
+%!error [L] = ichol0 (A_1, [], 'off');
+%!error [L, E] = ichol0 (A_1, 'off');
+%!error ichol0 (sparse (0), 'off');
+%!error ichol0 ([], 'foo');
+%!
+%!test
+%! L = ichol0 (sparse (1), 'off');
+%! assert (L, sparse (1));
+%! L = ichol0 (sparse (2), 'off');
+%! assert (L, sparse (sqrt (2)));
+%! L = ichol0 (sparse ([]), 'off');
+%! assert (L, sparse ([]));
+%!
+%!test
+%! L = ichol0 (A_1, 'off');
+%! assert (norm (A_1 - L*L', 'fro') / norm (A_1, 'fro'), 1e-2, 1e-2);
+%! L = ichol0 (A_1, 'on');
+%! assert (norm (A_1 - L*L', 'fro') / norm (A_1, 'fro'), 2e-2, 1e-2);
+%!
+%!test
+%! L = ichol0 (A_2, 'off');
+%! assert (norm (A_2 - L*L', 'fro') / norm (A_2, 'fro'), 1e-1, 1e-1)
+%! L = ichol0 (A_2, 'on');
+%! assert (norm (A_2 - L*L', 'fro') / norm (A_2, 'fro'), 2e-1, 1e-1)
+%!
+%!test
+%! L = ichol0 (A_3, 'off');
+%! assert (norm (A_3 - L*L', 'fro') / norm (A_3, 'fro'), eps, eps);
+%! L = ichol0 (A_3, 'on');
+%! assert (norm (A_3 - L*L', 'fro') / norm (A_3, 'fro'), eps, eps);
+%!
+%!test
+%! L = ichol0 (A_4, 'off');
+%! assert (norm (A_4 - L*L', 'fro') / norm (A_4, 'fro'), 1e-1, 1e-1);
+%! L = ichol0 (A_4, 'on');
+%! assert (norm (A_4 - L*L', 'fro') / norm (A_4, 'fro'), 1e-1, 1e-1);
+%!
+%% Complex matrices
+%!test
+%! L = ichol0 (A_5, 'off');
+%! assert (norm (A_5 - L*L', 'fro') / norm (A_5, 'fro'), 1e-2, 1e-2);
+%! L = ichol0 (A_5, 'on');
+%! assert (norm (A_5 - L*L', 'fro') / norm (A_5, 'fro'), 2e-2, 1e-2);
+%% Negative pivot 
+%!error ichol0 (A_6, 'off');
+%% Complex entry in the diagonal
+%!error ichol0 (A_7, 'off');
+
+*/
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libinterp/dldfcn/icholt.cc	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,480 @@
+/**
+ * Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+ *
+ * This file is part of Octave.
+ *
+ * Octave is free software; you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation; either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * Octave; see the file COPYING.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "defun-dld.h"
+#include "parse.h"
+
+// Secondary functions specialiced for complex or real case used
+// in icholt algorithms.
+template < typename T > inline T
+ichol_mult_complex (T a, T b)
+{
+  b.imag (-std::imag (b));
+  return a * b;
+}
+
+template < typename T > inline bool
+ichol_checkpivot_complex (T pivot)
+{
+  if (pivot.imag () != 0)
+    {
+      error ("icholt: Non-real pivot encountered. \
+              The matrix must be hermitian");
+      return false;
+    }
+  else if (pivot.real () < 0)
+    {
+      error ("icholt: Non-positive pivot encountered.");
+      return false;
+    }
+  return true;
+
+}
+
+template < typename T > inline bool
+ichol_checkpivot_real (T pivot)
+{
+  if (pivot < T (0))
+    {
+      error ("icholt: Non-positive pivot encountered.");
+      return false;
+    }
+  return true;
+}
+
+template < typename T> inline T 
+ichol_mult_real (T a, T b)
+{
+  return a * b;
+}
+
+
+template <typename octave_matrix_t, typename T,  T (*ichol_mult) (T, T), 
+          bool (*ichol_checkpivot) (T)>
+void ichol_t (const octave_matrix_t& sm, octave_matrix_t& L, const T* cols_norm,
+              const T droptol, const std::string michol = "off")
+              
+{
+
+  const octave_idx_type n = sm.cols ();
+  octave_idx_type j, jrow, jend, jjrow, jw, i, k, jj, Llist_len, total_len, w_len,
+                  max_len, ind;
+
+  char opt;
+  enum {OFF, ON};
+  if (michol == "on")
+    opt = ON;
+  else
+    opt = OFF;
+
+  // Input matrix pointers
+  octave_idx_type* cidx = sm.cidx ();
+  octave_idx_type* ridx = sm.ridx ();
+  T* data = sm.data ();
+
+  // Output matrix data structures. Because it is not known the 
+  // final zero pattern of the output matrix due to fill-in elements,
+  // an heuristic approach has been adopted for memory allocation. The 
+  // size of ridx_out_l and data_out_l is incremented 10% of their actual
+  // size (nnz(A) in the beginning).  If that amount is less than n, their
+  // size is just incremented in n elements. This way the number of
+  // reallocations decrease throughout the process, obtaining a good performance.
+  max_len = sm.nnz ();
+  max_len += (0.1 * max_len) > n ? 0.1 * max_len : n;
+  Array <octave_idx_type> cidx_out_l (dim_vector (n + 1,1));
+  octave_idx_type* cidx_l = cidx_out_l.fortran_vec ();
+  Array <octave_idx_type> ridx_out_l (dim_vector (max_len ,1));
+  octave_idx_type* ridx_l = ridx_out_l.fortran_vec ();
+  Array <T> data_out_l (dim_vector (max_len, 1));
+  T* data_l = data_out_l.fortran_vec ();
+
+  // Working arrays
+  OCTAVE_LOCAL_BUFFER (T, w_data, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, Lfirst, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, Llist, n);
+  OCTAVE_LOCAL_BUFFER (T, col_drops, n);
+  std::vector <octave_idx_type> vec;
+  vec.resize (n);
+
+
+  T zero = T (0);
+  cidx_l[0] = cidx[0];
+  for (i = 0; i < n; i++)
+    {
+      Llist[i] = -1;
+      Lfirst[i] = -1;
+      w_data[i] = 0;
+      col_drops[i] = zero;
+      vec[i] = 0;
+    }
+
+  total_len = 0;
+  for (k = 0; k < n; k++)
+    {
+      ind = 0;
+      for (j = cidx[k]; j < cidx[k+1]; j++)
+        {
+          w_data[ridx[j]] = data[j];
+          if (ridx[j] != k)
+            {
+              vec[ind] = ridx[j];
+              ind++;
+            }
+        }
+      jrow = Llist[k];
+      while (jrow != -1) 
+        {
+          jjrow = Lfirst[jrow];
+          jend = cidx_l[jrow+1];
+          for (jj = jjrow; jj < jend; jj++)
+            {
+              j = ridx_l[jj];
+              // If the element in the j position of the row is zero,
+              // then it will become non-zero, so we add it to the 
+              // vector that keeps track of non-zero elements in the working row.
+              if (w_data[j] == zero)
+                {
+                  vec[ind] = j; 
+                  ind++;
+                }
+              w_data[j] -=  ichol_mult (data_l[jj], data_l[jjrow]);
+
+            }
+          // Update the actual column first element and update the 
+          // linked list of the jrow row.
+          if ((jjrow + 1) < jend)
+            {
+              Lfirst[jrow]++;
+              j = jrow;
+              jrow = Llist[jrow];
+              Llist[j] = Llist[ridx_l[Lfirst[j]]];
+              Llist[ridx_l[Lfirst[j]]] = j;
+            }
+          else
+            jrow = Llist[jrow];
+        }
+
+      // Resizing output arrays
+      if ((max_len - total_len) < n)
+        {
+          max_len += (0.1 * max_len) > n ? 0.1 * max_len : n;
+          data_out_l.resize (dim_vector (max_len, 1));
+          data_l = data_out_l.fortran_vec ();
+          ridx_out_l.resize (dim_vector (max_len, 1));
+          ridx_l = ridx_out_l.fortran_vec ();
+        }
+      
+      // The sorting of the non-zero elements of the working column can be
+      // handled in a couple of ways. The most efficient two I found, are 
+      // keeping the elements in an ordered binary search tree dinamically 
+      // or keep them unsorted in a vector and at the end of the outer 
+      // iteration order them. The last approach exhibit lower execution 
+      // times.   
+      std::sort (vec.begin (), vec.begin () + ind);
+
+      data_l[total_len] = w_data[k];
+      ridx_l[total_len] = k;
+      w_len = 1;
+
+      // Extract then non-zero elements of working column and drop the
+      // elements that are lower than droptol * cols_norm[k].
+      for (i = 0; i < ind ; i++)
+        {
+          jrow = vec[i];
+          if (w_data[jrow] != zero)
+            {
+              if (std::abs (w_data[jrow]) < (droptol * cols_norm[k]))
+                {
+                  if (opt == ON)
+                    {
+                      col_drops[k] += w_data[jrow];
+                      col_drops[jrow] += w_data[jrow];
+                    }
+                }
+              else
+                {
+                  data_l[total_len + w_len] = w_data[jrow];
+                  ridx_l[total_len + w_len] = jrow;
+                  w_len++;
+                }
+              vec[i] = 0;
+            }
+          w_data[jrow] = zero;
+        }
+
+      // Compensate column sums --> michol option
+      if (opt == ON)
+        data_l[total_len] += col_drops[k];
+
+      if (data_l[total_len] == zero)
+        {
+          error ("icholt: There is a pivot equal to zero.");
+          break;
+        }
+      else if (!ichol_checkpivot (data_l[total_len]))
+        break;
+
+      // Once the elements are dropped and compensation of columns 
+      // sums are done, scale the elements by the pivot.
+      data_l[total_len] = std::sqrt (data_l[total_len]);
+      for (jj = total_len + 1; jj < (total_len + w_len); jj++)
+        data_l[jj] /=  data_l[total_len];
+      total_len += w_len;
+      cidx_l[k+1] = cidx_l[k] - cidx_l[0] + w_len;
+
+      // Update Llist and Lfirst with the k-column information.
+      if (k < (n - 1)) 
+        {
+          Lfirst[k] = cidx_l[k];
+          if ((Lfirst[k] + 1) < cidx_l[k+1])
+            {
+              Lfirst[k]++;
+              jjrow = ridx_l[Lfirst[k]];
+              Llist[k] = Llist[jjrow];
+              Llist[jjrow] = k;
+            }
+        }
+        
+      }
+
+  if (! error_state)
+    {
+      // Build the output matrices
+      L = octave_matrix_t (n, n, total_len);
+      for (i = 0; i <= n; i++)
+        L.cidx (i) = cidx_l[i];
+      for (i = 0; i < total_len; i++)
+        {
+          L.ridx (i) = ridx_l[i];
+          L.data (i) = data_l[i];
+        }
+    }
+
+}
+
+DEFUN_DLD (icholt, args, nargout, "-*- texinfo -*-\n\
+@deftypefn  {Loadable Function} {@var{L} =} icholt (@var{A}, @var{droptol}, @var{michol})\n\
+\n\
+Computes the thresholded Incomplete Cholesky factorization [ICT] of A \
+which must be an square hermitian matrix in the complex case and a symmetric \
+positive definite matrix in the real one. \
+\n\
+@code{[@var{L}] = icholt (@var{A}, @var{droptol}, @var{michol})} \
+computes the ICT of @var{A}, such that @code{@var{L} * @var{L}'} is an \
+approximation of the square sparse hermitian matrix @var{A}. @var{droptol} is \
+a non-negative scalar used as a drop tolerance when performing ICT. Elements \
+which are smaller in magnitude than @code{@var{droptol} * norm(@var{A}(j:end, j), 1)} \
+, are dropped from the resulting factor @var{L}. The parameter @var{michol} \
+decides whether the Modified IC(0) should be performed. This compensates the \
+main diagonal of @var{L}, such that @code{@var{A} * @var{e} = @var{L} * @var{L}' \
+ * @var{e}} with @code{@var{e} = ones (size (@var{A}, 2), 1))} holds. \n\
+\n\
+For more information about the algorithms themselves see:\n\
+\n\
+[1] Saad, Yousef. \"Preconditioning Techniques.\" Iterative Methods for Sparse Linear \
+Systems. PWS Publishing Company, 1996. \
+\n\
+\n\
+[2] Jones, Mark T. and Plassmann, Paul E.: An Improved Incomplete Cholesky \
+Factorization (1992). \
+\n\
+@seealso{ichol, ichol0, chol, ilu}\n\
+@end deftypefn")
+{
+  octave_value_list retval;
+
+  int nargin = args.length ();
+  // Default values of parameters
+  std::string michol = "off";
+  double droptol = 0;
+ 
+
+  if (nargout > 1 || nargin < 1 || nargin > 3)
+    {
+      print_usage ();
+      return retval;
+    }
+
+  if (args (0).is_scalar_type () || !args (0).is_sparse_type ())
+    error ("icholt: 1. parameter must be a sparse square matrix.");
+
+  if (args (0).is_empty ())
+    {
+      retval (0) = octave_value (SparseMatrix ());
+      return retval;
+    }
+
+  if (! error_state && (nargin >= 2))
+    {
+      droptol = args (1).double_value ();
+      if (error_state || (droptol < 0) || ! args (1).is_real_scalar ())
+        error ("icholt: 2. parameter must be a positive real scalar.");
+    }
+
+  if (! error_state && (nargin == 3))
+    {
+      michol = args (2).string_value ();
+      if (error_state || !(michol == "on" || michol == "off"))
+        error ("icholt: 3. parameter must be 'on' or 'off' character string.");
+    }
+
+  if (!error_state)
+    {
+      octave_value_list param_list;
+      if (! args (0).is_complex_type ())
+        {
+          Array <double> cols_norm;
+          SparseMatrix L;
+          param_list.append (args (0).sparse_matrix_value ());
+          SparseMatrix sm_l = feval ("tril", 
+                                     param_list) (0).sparse_matrix_value (); 
+          param_list (0) = sm_l;
+          param_list (1) = 1;
+          param_list (2) = "cols";
+          cols_norm = feval ("norm", param_list) (0).vector_value ();
+          param_list.clear ();
+          ichol_t <SparseMatrix, 
+                   double, ichol_mult_real, ichol_checkpivot_real> 
+                   (sm_l, L, cols_norm.fortran_vec (), droptol, michol);
+          if (! error_state)
+            retval (0) = octave_value (L);
+        }
+      else
+        {
+          Array <Complex> cols_norm;
+          SparseComplexMatrix L;
+          param_list.append (args (0).sparse_complex_matrix_value ());
+          SparseComplexMatrix sm_l = feval ("tril", 
+                                            param_list) (0).sparse_complex_matrix_value (); 
+          param_list (0) = sm_l;
+          param_list (1) = 1;
+          param_list (2) = "cols";
+          cols_norm = feval ("norm", param_list) (0).complex_vector_value ();
+          param_list.clear ();
+          ichol_t <SparseComplexMatrix, 
+                   Complex, ichol_mult_complex, ichol_checkpivot_complex> 
+                   (sm_l, L, cols_norm.fortran_vec (), Complex (droptol), michol);
+          if (! error_state)
+            retval (0) = octave_value (L);
+        }
+
+    }
+
+  return retval;
+}
+
+/*
+%% Real matrices
+%!shared A_1, A_2, A_3, A_4, A_5
+%! A_1 = [ 0.37, -0.05,  -0.05,  -0.07;
+%!        -0.05,  0.116,  0.0,   -0.05;
+%!        -0.05,  0.0,    0.116, -0.05;
+%!        -0.07, -0.05,  -0.05,   0.202];
+%! A_1 = sparse(A_1);
+%!
+%! A_2 = gallery ('poisson', 30);
+%!
+%! A_3 = gallery ('tridiag', 50);
+%!
+%! nx = 400; ny = 200;
+%! hx = 1 / (nx + 1); hy = 1 / (ny + 1);
+%! Dxx = spdiags ([ones(nx, 1), -2 * ones(nx, 1), ones(nx, 1)], [-1 0 1 ], nx, nx) / (hx ^ 2);
+%! Dyy = spdiags ([ones(ny, 1), -2 * ones(ny, 1), ones(ny, 1)], [-1 0 1 ], ny, ny) / (hy ^ 2);
+%! A_4 = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
+%! A_4 = sparse (A_4);
+%!
+%! A_5 = [ 0.37, -0.05,          -0.05,  -0.07;
+%!        -0.05,  0.116,          0.0,   -0.05 + 0.05i;
+%!        -0.05,  0.0,            0.116, -0.05;
+%!        -0.07, -0.05 - 0.05i,  -0.05,   0.202];
+%! A_5 = sparse(A_5);
+%! A_6 = [ 0.37,    -0.05 - i, -0.05,  -0.07;
+%!        -0.05 + i, 0.116,     0.0,   -0.05;
+%!        -0.05,     0.0,       0.116, -0.05;
+%!        -0.07,    -0.05,     -0.05,   0.202];
+%! A_6 = sparse(A_6);
+%! A_7 = A_5;
+%! A_7(1) = 2i;
+%!
+%!test
+%!error icholt ([]);
+%!error icholt ([],[]);
+%!error icholt ([],[],[]);
+%!error [~] = icholt ([],[],[]);
+%!error [L] = icholt ([],[],[]);
+%!error [L] = icholt ([], 1e-4, 1);
+%!error [L] = icholt (A_1, [], 'off');
+%!error [L] = icholt (A_1, 1e-4, []);
+%!error [L, E] = icholt (A_1, 1e-4, 'off');
+%!error [L] = icholt (A_1, 1e-4, 'off', A_1);
+%!error icholt (sparse (0), 1e-4, 'off');
+%!error icholt (sparse (-0), 1e-4, 'off');
+%!error icholt (sparse (-1), 1e-4, 'off');
+%!error icholt (sparse (i), 1e-4, 'off');
+%!error icholt (sparse (-i), 1e-4, 'off');
+%!error icholt (sparse (1 + 1i), 1e-4, 'off');
+%!error icholt (sparse (1 - 1i), 1e-4, 'off');
+%!
+%!test
+%! L = icholt (sparse (1), 1e-4, 'off');
+%! assert (L, sparse (1));
+%! L = icholt (sparse (4), 1e-4, 'off');
+%! assert (L, sparse (2));
+%!
+%!test
+%! L = icholt (A_1, 1e-4, 'off');
+%! assert (norm (A_1 - L*L', 'fro') / norm (A_1, 'fro'), eps, eps);
+%! L = icholt (A_1, 1e-4, 'on');
+%! assert (norm (A_1 - L*L', 'fro') / norm (A_1, 'fro'), eps, eps);
+%!
+%!test
+%! L = icholt (A_2, 1e-4, 'off');
+%! assert (norm (A_2 - L*L', 'fro') / norm (A_2, 'fro'), 1e-4, 1e-4);
+%! L = icholt (A_2, 1e-4, 'on');
+%! assert (norm (A_2 - L*L', 'fro') / norm (A_2, 'fro'), 3e-4, 1e-4);
+%!
+%!test
+%! L = icholt (A_3, 1e-4, 'off');
+%! assert (norm (A_3 - L*L', 'fro') / norm (A_3, 'fro'), eps, eps);
+%! L = icholt (A_3, 1e-4, 'on');
+%! assert (norm (A_3 - L*L', 'fro') / norm (A_3, 'fro'), eps, eps);
+%!
+%!test
+%! L = icholt (A_4, 1e-4, 'off');
+%! assert (norm (A_4 - L*L', 'fro') / norm (A_4, 'fro'), 2e-4, 1e-4);
+%! L = icholt (A_4, 1e-4, 'on');
+%! assert (norm (A_4 - L*L', 'fro') / norm (A_4, 'fro'), 7e-4, 1e-4);
+%!
+%% Complex matrices
+%!test
+%! L = ichol0 (A_5, 'off');
+%! assert (norm (A_5 - L*L', 'fro') / norm (A_5, 'fro'), 1e-2, 1e-2);
+%! L = ichol0 (A_5, 'on');
+%! assert (norm (A_5 - L*L', 'fro') / norm (A_5, 'fro'), 2e-2, 1e-2);
+%% Negative pivot 
+%!error ichol0 (A_6, 'off');
+%% Complex entry in the diagonal
+%!error ichol0 (A_7, 'off');
+*/
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libinterp/dldfcn/ilu0.cc	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,311 @@
+/**
+ * Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+ *
+ * This file is part of Octave.
+ *
+ * Octave is free software; you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation; either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * Octave; see the file COPYING.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "defun-dld.h"
+#include "parse.h"
+
+/* 
+ * That function implements the IKJ and JKI variants of gaussian elimination to
+ * perform the ILUTP decomposition. The behaviour is controlled by milu
+ * parameter. If milu = ['off'|'col'] the JKI version is performed taking
+ * advantage of CCS format of the input matrix. If milu = 'row' the input matrix
+ * has to be transposed to obtain the equivalent CRS structure so we can work
+ * efficiently with rows. In this case IKJ version is used.
+ */
+
+template <typename octave_matrix_t, typename T>
+void ilu_0 (octave_matrix_t& sm, const std::string milu = "off") {
+
+  const octave_idx_type n = sm.cols ();
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, iw, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, uptr, n);
+  octave_idx_type j1, j2, jrow, jw, i, k, jj;
+  T tl, r;
+
+  char opt;
+  enum {OFF, ROW, COL};
+  if (milu == "row")
+    {
+      opt = ROW;
+      sm = sm.transpose ();
+    }
+  else if (milu == "col")
+    opt = COL;
+  else
+    opt = OFF;
+
+  octave_idx_type* cidx = sm.cidx ();
+  octave_idx_type* ridx = sm.ridx ();
+  T* data = sm.data ();
+  for (i = 0; i < n; i++)
+    iw[i] = -1;
+  for (k = 0; k < n; k++)
+    {
+      j1 = cidx[k];
+      j2 = cidx[k+1] - 1;
+      octave_idx_type j;
+      for (j = j1; j <= j2; j++)
+        {
+          iw[ridx[j]] = j;
+        }
+      r = 0;
+      j = j1;
+      jrow = ridx[j];
+      while ((jrow < k) && (j <= j2)) 
+        {
+          if (opt == ROW)
+            {
+              tl = data[j] / data[uptr[jrow]];
+              data[j] = tl;
+            }
+          for (jj = uptr[jrow] + 1; jj < cidx[jrow+1]; jj++)
+            {
+              jw = iw[ridx[jj]];
+              if (jw != -1)
+                if (opt == ROW)
+                  data[jw] -= tl * data[jj];
+                else
+                  data[jw] -= data[j] * data[jj];
+
+              else
+                // That is for the milu='row'
+                if (opt == ROW)
+                  r += tl * data[jj];
+                else if (opt == COL)
+                  r += data[j] * data[jj];
+            }
+          j++;
+          jrow = ridx[j];
+        }
+      uptr[k] = j;
+      if(opt != OFF)
+        data[uptr[k]] -= r;
+      if (opt != ROW)
+        for (jj = uptr[k] + 1; jj < cidx[k+1]; jj++)
+          data[jj] /=  data[uptr[k]];
+      if (k != jrow)
+        {
+          error ("ilu0: Your input matrix has a zero in the diagonal.");
+          break;
+        }
+
+      if (data[j] == T(0))
+        {
+          error ("ilu0: There is a pivot equal to zero.");
+          break;
+        }
+      for(i = j1; i <= j2; i++)
+        iw[ridx[i]] = -1;
+    }
+  if (opt == ROW)
+    sm = sm.transpose ();
+}
+
+DEFUN_DLD (ilu0, args, nargout, "-*- texinfo -*-\n\
+@deftypefn  {Loadable Function} {[@var{L}, @var{U}] =} ilu0 (@var{A})\n\
+@deftypefnx  {Loadable Function} {[@var{L}, @var{U}] =} ilu0 (@var{A}, @var{milu})\n\
+\n\
+NOTE: No pivoting is performed.\n\
+\n\
+Computes the incomplete LU-factorization (ILU) with 0-order level of fill of \
+@var{A}.\n\
+\n\
+@code{[@var{L}, @var{U}] = ilu0 (@var{A})} computes the zero fill-in ILU-\
+factorization ILU(0) of @var{A}, such that @code{@var{L} * @var{U}} is an \
+approximation of the square sparse matrix @var{A}. Parameter @var{milu} = \
+['off'|'row'|'col'] set if no row nor column sums are preserved, row sums \
+are preserved or column sums are preserved respectively.\n\
+\n\
+For a full description of ILU0 and its options see ilu documentation.\n\
+\n\
+For more information about the algorithms themselves see:\n\
+\n\
+[1] Saad, Yousef: Iterative Methods for Sparse Linear Systems. Second Edition. \
+Minneapolis, Minnesota: Siam 2003.\n\
+\n\
+    @seealso{ilu, ilutp, iluc, ichol}\n\
+    @end deftypefn")
+{
+  octave_value_list retval;
+
+  int nargin = args.length ();
+  std::string milu;
+ 
+
+  if (nargout > 2 || nargin < 1 || nargin > 2)
+    {
+      print_usage ();
+      return retval;
+    }
+
+  if (args (0).is_empty ())
+    {
+      retval (0) = octave_value (SparseMatrix());
+      retval (1) = octave_value (SparseMatrix());
+      return retval;
+    }
+
+  if (args (0).is_scalar_type () || !args (0).is_sparse_type ())
+    error ("ilu0: 1. parameter must be a sparse square matrix.");
+
+  if (nargin == 2)
+    {
+      milu = args (1).string_value ();
+      if (error_state || !(milu == "row" || milu == "col" || milu == "off"))
+        error (
+          "ilu0: 2. parameter must be 'row', 'col' or 'off' character string.");
+      // maybe resolve milu to a numerical value / enum type already here!
+    }
+
+
+  if (!error_state)
+    {
+      // In ILU0 algorithm the zero-pattern of the input matrix is preserved so
+      // it's structure does not change during the algorithm. The same input
+      // matrix is used to build the output matrix due to that fact.
+      octave_value_list param_list;
+      if (!args (0).is_complex_type ())
+        {
+          SparseMatrix sm = args (0).sparse_matrix_value ();
+          ilu_0 <SparseMatrix, double> (sm, milu);
+          if (!error_state)
+            {
+              param_list.append (sm);
+              retval (1) = octave_value (
+                feval ("triu", param_list)(0).sparse_matrix_value ()); 
+              SparseMatrix eye = feval ("speye",
+                octave_value_list (
+                  octave_value (sm.cols ())))(0).sparse_matrix_value ();
+              param_list.append (-1);
+              retval (0) = octave_value (
+                eye + feval ("tril", param_list)(0).sparse_matrix_value ()); 
+
+            }
+        }
+      else
+        {
+          SparseComplexMatrix sm = args (0).sparse_complex_matrix_value ();
+          ilu_0 <SparseComplexMatrix, Complex> (sm, milu);
+          if (!error_state)
+            {
+              param_list.append (sm);
+              retval (1) = octave_value (
+                feval ("triu", param_list)(0).sparse_complex_matrix_value ()); 
+              SparseComplexMatrix eye = feval ("speye",
+                octave_value_list (
+                  octave_value (sm.cols ())))(0).sparse_complex_matrix_value ();
+              param_list.append (-1);
+              retval (0) = octave_value (eye +
+                feval ("tril", param_list)(0).sparse_complex_matrix_value ()); 
+           }
+        }
+
+    }
+
+  return retval;
+}
+
+/* Test cases for real numbers.
+%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
+%! n_tiny = 5;
+%! n_small = 40;
+%! n_medium = 600;
+%! n_large = 10000;
+%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
+%! A_small = sprand (n_small, n_small, 1/n_small) + speye (n_small);
+%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
+%! A_large = sprand (n_large, n_large, 1/n_large/10) + speye (n_large);
+%!# Input validation tests
+%!test 
+%!error [L,U] = ilu0(A_tiny, 1);
+%!error [L,U] = ilu0(A_tiny, [1, 2]);
+%!error [L,U] = ilu0(A_tiny, '');
+%!error [L,U] = ilu0(A_tiny, 'foo');
+%! [L,U] = ilu0 ([]);
+%! assert (isempty (L), logical (1));
+%! assert (isempty (U), logical (1));
+%!error [L,U] = ilu0 (0);
+%!error [L,U] = ilu0 (sparse (0));
+%! [L,U] = ilu0 (sparse (2));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2));
+%!test 
+%! [L,U] = ilu0 (A_tiny);
+%! assert (norm (A_tiny - L * U, "fro") / norm (A_tiny, "fro"), 0, n_tiny*eps);
+%!test 
+%! [L,U] = ilu0 (A_small);
+%! assert (norm (A_small - L * U, "fro") / norm (A_small, "fro"), 0, 1);
+%!test 
+%! [L,U] = ilu0 (A_medium);
+%! assert (norm (A_medium - L * U, "fro") / norm (A_medium, "fro"), 0, 1);
+%!test 
+%! [L,U] = ilu0 (A_large);
+%! assert (norm (A_large - L * U, "fro") / norm (A_large, "fro"), 0, 1);
+*/
+
+/* Test cases for complex numbers
+%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
+%! n_tiny = 5;
+%! n_small = 40;
+%! n_medium = 600;
+%! n_large = 10000;
+%! A_tiny = spconvert([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
+%! A_tiny(1,1) += 1i;
+%! A_small = sprand(n_small, n_small, 1/n_small) + ...
+%!   i * sprand(n_small, n_small, 1/n_small) + speye (n_small);
+%! A_medium = sprand(n_medium, n_medium, 1/n_medium) + ...
+%!   i * sprand(n_medium, n_medium, 1/n_medium) + speye (n_medium);
+%! A_large = sprand(n_large, n_large, 1/n_large/10) + ...
+%!   i * sprand(n_large, n_large, 1/n_large/10) + speye (n_large);
+%!test 
+%! [L,U] = ilu0 ([]);
+%! assert (isempty (L), logical (1));
+%! assert (isempty (U), logical (1));
+%!error [L,U] = ilu0 (0+0i);
+%!error [L,U] = ilu0 (0i);
+%!error [L,U] = ilu0 (sparse (0+0i));
+%!error [L,U] = ilu0 (sparse (0i));
+%!test 
+%! [L,U] = ilu0 (sparse (2+0i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2));
+%! [L,U] = ilu0 (sparse (2+2i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2+2i));
+%! [L,U] = ilu0 (sparse (2i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2i));
+%!test 
+%! [L,U] = ilu0 (A_tiny);
+%! assert (norm (A_tiny - L * U, "fro") / norm (A_tiny, "fro"), 0, n_tiny*eps);
+%!test 
+%! [L,U] = ilu0 (A_small);
+%! assert (norm (A_small - L * U, "fro") / norm (A_small, "fro"), 0, 1);
+%!test 
+%! [L,U] = ilu0 (A_medium);
+%! assert (norm (A_medium - L * U, "fro") / norm (A_medium, "fro"), 0, 1);
+%!test 
+%! [L,U] = ilu0 (A_large);
+%! assert (norm (A_large - L * U, "fro") / norm (A_large, "fro"), 0, 1);
+*/
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libinterp/dldfcn/iluc.cc	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,518 @@
+/**
+ * Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+ *
+ * This file is part of Octave.
+ *
+ * Octave is free software; you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation; either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * Octave; see the file COPYING.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "defun-dld.h"
+#include "parse.h"
+
+template <typename octave_matrix_t, typename T>
+void ilu_crout (octave_matrix_t& sm_l, octave_matrix_t& sm_u,
+                octave_matrix_t& L, octave_matrix_t& U, T* cols_norm,
+                T* rows_norm, const T droptol = 0,
+                const std::string milu = "off")
+{
+
+  // Map the strings into chars to faster comparation inside loops
+  #define ROW  1
+  #define COL  2
+  #define OFF  0
+  char opt;
+  if (milu == "row")
+    opt = ROW;
+  else if (milu == "col")
+    opt = COL;
+  else
+    opt = OFF;
+
+  octave_idx_type jrow, i, j, k, jj, total_len_l, total_len_u, max_len_u,
+                  max_len_l, w_len_u, w_len_l, cols_list_len, rows_list_len;
+
+  const octave_idx_type n = sm_u.cols ();
+  sm_u = sm_u.transpose ();
+
+  max_len_u = sm_u.nnz ();
+  max_len_u += (0.1 * max_len_u) > n ? 0.1 * max_len_u : n;
+  max_len_l = sm_l.nnz ();
+  max_len_l += (0.1 * max_len_l) > n ? 0.1 * max_len_l : n;
+  // Extract pointers to the arrays for faster access inside loops
+  octave_idx_type* cidx_in_u = sm_u.cidx ();
+  octave_idx_type* ridx_in_u = sm_u.ridx ();
+  T* data_in_u = sm_u.data ();
+  octave_idx_type* cidx_in_l = sm_l.cidx ();
+  octave_idx_type* ridx_in_l = sm_l.ridx ();
+  T* data_in_l = sm_l.data ();
+  T tl, pivot;
+
+  // L output arrays
+  Array <octave_idx_type> ridx_out_l (dim_vector (max_len_l, 1));
+  octave_idx_type* ridx_l = ridx_out_l.fortran_vec ();
+  Array <T> data_out_l (dim_vector (max_len_l, 1));
+  T* data_l = data_out_l.fortran_vec ();
+
+  // U output arrays
+  Array <octave_idx_type> ridx_out_u (dim_vector (max_len_u, 1));
+  octave_idx_type* ridx_u = ridx_out_u.fortran_vec ();
+  Array <T> data_out_u (dim_vector (max_len_u, 1));
+  T* data_u = data_out_u.fortran_vec ();
+
+  // Working arrays
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, cidx_l, n + 1);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, cidx_u, n + 1);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, cols_list, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, rows_list, n);
+  OCTAVE_LOCAL_BUFFER (T, w_data_l, n);
+  OCTAVE_LOCAL_BUFFER (T, w_data_u, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, Ufirst, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, Lfirst, n);
+  OCTAVE_LOCAL_BUFFER (T, cr_sum, n);
+
+  T zero = T (0);
+  
+  cidx_u[0] = cidx_in_u[0];
+  cidx_l[0] = cidx_in_l[0];
+  for (i = 0; i < n; i++)
+    {
+      w_data_u[i] = zero;
+      w_data_l[i] = zero;
+      cr_sum[i] = zero;
+    }
+
+  total_len_u = 0;
+  total_len_l = 0;
+  cols_list_len = 0;
+  rows_list_len = 0;
+
+  for (k = 0; k < n; k++)
+    {
+      // Load the working column and working row 
+      for (i = cidx_in_l[k]; i < cidx_in_l[k+1]; i++)
+        w_data_l[ridx_in_l[i]] = data_in_l[i];
+
+      for (i = cidx_in_u[k]; i < cidx_in_u[k+1]; i++)
+        w_data_u[ridx_in_u[i]] = data_in_u[i];
+
+      // Update U working row
+      for (j = 0; j < rows_list_len; j++)
+        {
+          if ((Ufirst[rows_list[j]] != -1))
+            for (jj = Ufirst[rows_list[j]]; jj < cidx_u[rows_list[j]+1]; jj++)
+              {
+                jrow = ridx_u[jj];
+                w_data_u[jrow] -= data_u[jj] * data_l[Lfirst[rows_list[j]]];
+              }
+        }
+      // Update L working column
+      for (j = 0; j < cols_list_len; j++)
+        {
+          if (Lfirst[cols_list[j]] != -1)
+            for (jj = Lfirst[cols_list[j]]; jj < cidx_l[cols_list[j]+1]; jj++)
+              {
+                jrow = ridx_l[jj];
+                w_data_l[jrow] -= data_l[jj] * data_u[Ufirst[cols_list[j]]];
+              }
+        }
+
+      if ((max_len_u - total_len_u) < n)
+        {
+          max_len_u += (0.1 * max_len_u) > n ? 0.1 * max_len_u : n;
+          data_out_u.resize (dim_vector (max_len_u, 1));
+          data_u = data_out_u.fortran_vec ();
+          ridx_out_u.resize (dim_vector (max_len_u, 1));
+          ridx_u = ridx_out_u.fortran_vec ();
+        }
+
+      if ((max_len_l - total_len_l) < n)
+        {
+          max_len_l += (0.1 * max_len_l) > n ? 0.1 * max_len_l : n;
+          data_out_l.resize (dim_vector (max_len_l, 1));
+          data_l = data_out_l.fortran_vec ();
+          ridx_out_l.resize (dim_vector (max_len_l, 1));
+          ridx_l = ridx_out_l.fortran_vec ();
+        }
+
+      // Expand the working row into the U output data structures
+      w_len_l = 0;
+      data_u[total_len_u] = w_data_u[k];
+      ridx_u[total_len_u] = k;
+      w_len_u = 1;
+      for (i = k + 1; i < n; i++)
+        {
+          if (w_data_u[i] != zero)
+            {
+              if (std::abs (w_data_u[i]) < (droptol * rows_norm[k]))
+                {
+                  if (opt == ROW)
+                    cr_sum[k] += w_data_u[i];
+                  else if (opt == COL)
+                    cr_sum[i] += w_data_u[i];
+                }
+              else
+                {
+                  data_u[total_len_u + w_len_u] = w_data_u[i];
+                  ridx_u[total_len_u + w_len_u] = i;
+                  w_len_u++;
+                }
+            }
+
+          // Expand the working column into the L output data structures
+          if (w_data_l[i] != zero)
+            {
+              if (std::abs (w_data_l[i]) < (droptol * cols_norm[k]))
+                {
+                  if (opt == COL)
+                    cr_sum[k] += w_data_l[i];
+                  else if (opt == ROW)
+                    cr_sum[i] += w_data_l[i];
+                }
+              else
+                {
+                  data_l[total_len_l + w_len_l] = w_data_l[i];
+                  ridx_l[total_len_l + w_len_l] = i;
+                  w_len_l++;
+                }
+            }
+          w_data_u[i] = zero;
+          w_data_l[i] = zero;
+        }
+
+      // Compensate row and column sums --> milu option
+      if (opt == COL || opt == ROW)
+        data_u[total_len_u] += cr_sum[k];
+
+      // Check if the pivot is zero
+      if (data_u[total_len_u] == zero)
+        {
+              error ("iluc: There is a pivot equal to zero.");
+              break;
+        }
+      
+      // Scale the elements in L by the pivot
+      for (i = total_len_l ; i < (total_len_l + w_len_l); i++)
+        data_l[i] /= data_u[total_len_u];
+
+
+      total_len_u += w_len_u;
+      cidx_u[k+1] = cidx_u[k] - cidx_u[0] + w_len_u;
+      total_len_l += w_len_l;
+      cidx_l[k+1] = cidx_l[k] - cidx_l[0] + w_len_l;
+
+      // The tricky part of the algorithm. The arrays pointing to the first
+      // working element of each column in the next iteration (Lfirst) or
+      // the first working element of each row (Ufirst) are updated. Also the
+      // arrays working as lists cols_list and rows_list are filled with indexes
+      // pointing to Ufirst and Lfirst respectively.
+      // TODO: Maybe the -1 indicating in Ufirst and Lfirst, that no elements
+      // have to be considered in a certain column or row in next iteration, can
+      // be removed. It feels safer to me using such an indicator.
+      if (k < (n - 1))
+        {
+          if (w_len_u > 0)
+            Ufirst[k] = cidx_u[k];
+          else
+            Ufirst[k] = -1;
+          if (w_len_l > 0)
+            Lfirst[k] = cidx_l[k];
+          else
+            Lfirst[k] = -1;
+          cols_list_len = 0;
+          rows_list_len = 0;
+          for (i = 0; i <= k; i++)
+            {
+              if (Ufirst[i] != -1)
+                {
+                  jj = ridx_u[Ufirst[i]];
+                  if (jj < (k + 1))
+                    {
+                      if (Ufirst[i] < (cidx_u[i+1]))
+                        {
+                          Ufirst[i]++;
+                          if (Ufirst[i] == cidx_u[i+1])
+                            Ufirst[i] = -1;
+                          else
+                            jj = ridx_u[Ufirst[i]];
+                        }
+                    }
+                  if (jj == (k + 1)) 
+                    {
+                      cols_list[cols_list_len] = i;
+                      cols_list_len++;
+                    }
+                }
+
+              if (Lfirst[i] != -1)
+                {
+                  jj = ridx_l[Lfirst[i]];
+                  if (jj < (k + 1))
+                    if(Lfirst[i] < (cidx_l[i+1]))
+                      {
+                        Lfirst[i]++;
+                        if (Lfirst[i] == cidx_l[i+1])
+                          Lfirst[i] = -1;
+                        else
+                          jj = ridx_l[Lfirst[i]];
+                      }
+                  if (jj == (k + 1)) 
+                    {
+                      rows_list[rows_list_len] = i;
+                      rows_list_len++;
+                    }
+                }
+            }
+        }
+    }
+
+  if (!error_state)
+    {
+      // Build the output matrices
+      L = octave_matrix_t (n, n, total_len_l);
+      U = octave_matrix_t (n, n, total_len_u);
+      for (i = 0; i <= n; i++)
+        L.cidx (i) = cidx_l[i];
+      for (i = 0; i < total_len_l; i++)
+        {
+          L.ridx (i) = ridx_l[i];
+          L.data (i) = data_l[i];
+        }
+      for (i = 0; i <= n; i++)
+        U.cidx (i) = cidx_u[i];
+      for (i = 0; i < total_len_u; i++)
+        {
+          U.ridx (i) = ridx_u[i];
+          U.data (i) = data_u[i];
+        }
+      U = U.transpose ();
+    }
+}
+
+DEFUN_DLD (iluc, args, nargout, "-*- texinfo -*-\n\
+@deftypefn  {Loadable Function} {[@var{L}, @var{U}] =} iluc (@var{A})\n\
+@deftypefnx {Loadable Function} {[@var{L}, @var{U}] =} iluc (@var{A}, @var{droptol}, \
+@var{milu})\n\
+\n\
+Computes the crout version incomplete LU-factorization (ILU) with threshold of @var{A}.\n\
+\n\
+NOTE: No pivoting is performed.\n\
+\n\
+@code{[@var{L}, @var{U}] = iluc (@var{A})} computes the default crout version\n\
+ILU-factorization with threshold ILUT of @var{A}, such that \
+@code{@var{L} * @var{U}} is an approximation of the square sparse matrix \
+@var{A}. This version of ILU algorithms is significantly faster than ILUT or ILU(0). \
+Parameter @code{@var{droptol}>=0} is the scalar double threshold. All elements \
+@code{x<=@var{droptol}} will be dropped in the factorization. Parameter @var{milu} \
+= ['off'|'row'|'col'] set if no row nor column sums are preserved, row sums are \
+preserved or column sums are preserved respectively.\n\
+\n\
+For a full description of ILUC behaviour and its options see ilu documentation.\n\
+\n\
+For more information about the algorithms themselves see:\n\
+\n\
+[1] Saad, Yousef: Iterative Methods for Sparse Linear Systems. Second Edition. \
+Minneapolis, Minnesota: Siam 2003.\n\
+\n\
+@seealso{ilu, ilu0, ilutp, ichol}\n\
+@end deftypefn")
+{
+
+  octave_value_list retval;
+  int nargin = args.length ();
+  std::string milu = "off";
+  double droptol = 0;
+  double thresh = 0;
+
+  if (nargout != 2 || nargin < 1 || nargin > 3)
+    {
+      print_usage ();
+      return retval;
+    }
+
+  // To be matlab compatible 
+  if (args (0).is_empty ())
+    {
+      retval (0) = octave_value (SparseMatrix());
+      retval (1) = octave_value (SparseMatrix());
+      return retval;
+    }
+
+  if (args (0).is_scalar_type () || !args (0).is_sparse_type ())
+    error ("iluc: 1. parameter must be a sparse square matrix.");
+
+  if (! error_state && (nargin >= 2))
+    {
+      droptol = args (1).double_value ();
+      if (error_state || (droptol < 0) || ! args (1).is_real_scalar ())
+        error ("iluc: 2. parameter must be a positive real scalar.");
+    }
+
+  if (! error_state && (nargin == 3))
+    {
+      milu = args (2).string_value ();
+      if (error_state || !(milu == "row" || milu == "col" || milu == "off"))
+        error ("iluc: 3. parameter must be 'row', 'col' or 'off' character string.");
+    }
+
+  if (! error_state)
+    {
+      octave_value_list param_list;
+      if (!args (0).is_complex_type ())
+        {
+          Array<double> cols_norm, rows_norm;
+          param_list.append (args (0).sparse_matrix_value ());
+          SparseMatrix sm_u =  feval ("triu", param_list)(0).sparse_matrix_value (); 
+          param_list.append (-1);
+          SparseMatrix sm_l =  feval ("tril", param_list)(0).sparse_matrix_value (); 
+          param_list (1) = "rows";
+          rows_norm = feval ("norm", param_list)(0).vector_value ();
+          param_list (1) = "cols";
+          cols_norm = feval ("norm", param_list)(0).vector_value ();
+          param_list.clear ();
+          SparseMatrix U;
+          SparseMatrix L;
+          ilu_crout <SparseMatrix, double> (sm_l, sm_u, L, U, cols_norm.fortran_vec (), 
+                                            rows_norm.fortran_vec (), droptol, milu);
+          if (! error_state)
+            {
+              param_list.append (octave_value (L.cols ()));
+              SparseMatrix eye = feval ("speye", param_list)(0).sparse_matrix_value ();
+              retval (0) = octave_value (L + eye);
+              retval (1) = octave_value (U);
+            }
+        }
+      else
+        {
+          Array<Complex> cols_norm, rows_norm;
+          param_list.append (args (0).sparse_complex_matrix_value ());
+          SparseComplexMatrix sm_u =  feval("triu", 
+                                            param_list)(0).sparse_complex_matrix_value (); 
+          param_list.append (-1);
+          SparseComplexMatrix sm_l =  feval("tril", 
+                                            param_list)(0).sparse_complex_matrix_value (); 
+          param_list (1) = "rows";
+          rows_norm = feval ("norm", param_list)(0).complex_vector_value ();
+          param_list (1) = "cols";
+          cols_norm = feval ("norm", param_list)(0).complex_vector_value ();
+          param_list.clear ();
+          SparseComplexMatrix U;
+          SparseComplexMatrix L;
+          ilu_crout < SparseComplexMatrix, Complex > 
+                    (sm_l, sm_u, L, U, cols_norm.fortran_vec () , 
+                     rows_norm.fortran_vec (), Complex (droptol), milu);
+          if (! error_state)
+            {
+              param_list.append (octave_value (L.cols ()));
+              SparseComplexMatrix eye = feval ("speye", 
+                                                param_list)(0).sparse_complex_matrix_value ();
+              retval (0) = octave_value (L + eye);
+              retval (1) = octave_value (U);
+            }
+        }
+
+
+    }
+
+  return retval;
+}
+
+
+/* Test cases for complex numbers
+%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
+%! n_tiny = 5;
+%! n_small = 40;
+%! n_medium = 600;
+%! n_large = 10000;
+%! A_tiny = spconvert([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
+%! A_tiny(1,1) += 1i;
+%! A_small = sprand(n_small, n_small, 1/n_small) + i * sprand(n_small, n_small, 1/n_small) + speye (n_small);
+%! A_medium = sprand(n_medium, n_medium, 1/n_medium) + i * sprand(n_medium, n_medium, 1/n_medium) + speye (n_medium);
+%! A_large = sprand(n_large, n_large, 1/n_large/10) + i * sprand(n_large, n_large, 1/n_large/10) + speye (n_large);
+%!# Input validation tests
+%!test 
+%!error [L,U] = iluc(A_tiny, -1);
+%!error [L,U] = iluc(A_tiny, [1,2]);
+%!error [L,U] = iluc(A_tiny, 2i);
+%!error [L,U] = iluc(A_tiny, 1, 'foo');
+%!error [L,U] = iluc(A_tiny, 1, '');
+%!error [L,U] = iluc(A_tiny, 1, 1);
+%!error [L,U] = iluc(A_tiny, 1, [1,2]);
+%! [L,U] = iluc ([]);
+%! assert (isempty (L), logical (1));
+%! assert (isempty (U), logical (1));
+%!error [L,U] = iluc (0+0i);
+%!error [L,U] = iluc (0i);
+%!error [L,U] = iluc (sparse (0+0i));
+%!error [L,U] = iluc (sparse (0i));
+%! [L,U] = iluc (sparse (2+0i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2));
+%! [L,U] = iluc (sparse (2+2i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2+2i));
+%! [L,U] = iluc (sparse (2i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2i));
+%!# Output tests
+%!test 
+%! [L,U] = iluc (A_tiny);
+%! assert (norm (A_tiny - L * U, "fro") / norm (A_tiny, "fro"), 0, n_tiny*eps);
+%!test 
+%! [L,U] = iluc (A_small);
+%! assert (norm (A_small - L * U, "fro") / norm (A_small, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_medium);
+%! assert (norm (A_medium - L * U, "fro") / norm (A_medium, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_large);
+%! assert (norm (A_large - L * U, "fro") / norm (A_large, "fro"), 0, 1);
+*/
+
+/* Test cases for real numbers.
+%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
+%! n_tiny = 5;
+%! n_small = 40;
+%! n_medium = 600;
+%! n_large = 10000;
+%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
+%! A_small = sprand (n_small, n_small, 1/n_small) + speye (n_small);
+%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
+%! A_large = sprand (n_large, n_large, 1/n_large/10) + speye (n_large);
+%!test 
+%! [L,U] = iluc ([]);
+%! assert (isempty (L), logical (1));
+%! assert (isempty (U), logical (1));
+%!error [L,U] = iluc (0);
+%!error [L,U] = iluc (sparse (0));
+%!test 
+%! [L,U] = iluc (sparse (2));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2));
+%!test 
+%! [L,U] = iluc (A_tiny);
+%! assert (norm (A_tiny - L * U, "fro") / norm (A_tiny, "fro"), 0, n_tiny*eps);
+%!test 
+%! [L,U] = iluc (A_small);
+%! assert (norm (A_small - L * U, "fro") / norm (A_small, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_medium);
+%! assert (norm (A_medium - L * U, "fro") / norm (A_medium, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_large);
+%! assert (norm (A_large - L * U, "fro") / norm (A_large, "fro"), 0, 1);
+*/
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libinterp/dldfcn/ilutp.cc	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,707 @@
+/**
+ * Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+ *
+ * This file is part of Octave.
+ *
+ * Octave is free software; you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation; either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * Octave; see the file COPYING.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "defun-dld.h"
+#include "parse.h"
+
+
+// That function implements the IKJ and JKI variants of gaussian elimination 
+// to perform the ILUTP decomposition. The behaviour is controlled by milu 
+// parameter. If milu = ['off'|'col'] the JKI version is performed taking 
+// advantage of CCS format of the input matrix. Row pivoting is performed. 
+// If milu = 'row' the input matrix has to be transposed to obtain the 
+// equivalent CRS structure so we can work efficiently with rows. In that
+// case IKJ version is used and column pivoting is performed.
+
+template <typename octave_matrix_t, typename T>
+void ilu_tp (octave_matrix_t& sm, octave_matrix_t& L, octave_matrix_t& U, 
+             octave_idx_type nnz_u, octave_idx_type nnz_l, T* cols_norm,  
+             Array <octave_idx_type>& perm_vec, const T droptol = T(0),
+             const T thresh = T(0), const  std::string milu = "off", 
+             const double udiag = 0)
+  {
+  
+  // Map the strings into chars to faster comparation inside loops
+  enum {OFF, ROW, COL};
+  char opt;
+  if (milu == "row")
+    opt = ROW;
+  else if (milu == "col")
+    opt = COL;
+  else
+    opt = OFF;
+  
+  const octave_idx_type n = sm.cols ();
+
+  // That is necessary for the JKI (milu = "row") variant.
+  if (opt == ROW)
+    sm = sm.transpose();
+
+  // Extract pointers to the arrays for faster access inside loops
+  octave_idx_type* cidx_in = sm.cidx ();
+  octave_idx_type* ridx_in = sm.ridx ();
+  T* data_in = sm.data ();
+  octave_idx_type jrow, i, j, k, jj, c, total_len_l, total_len_u, p_perm, res, 
+                  max_ind, max_len_l, max_len_u;
+  T tl, aux, maximum;
+
+  max_len_u = nnz_u;
+  max_len_u += (0.1 * max_len_u) > n ? 0.1 * max_len_u : n;
+  max_len_l = nnz_l;
+  max_len_l += (0.1 * max_len_l) > n ? 0.1 * max_len_l : n;
+
+  Array <octave_idx_type> cidx_out_l (dim_vector (n + 1, 1));
+  octave_idx_type* cidx_l = cidx_out_l.fortran_vec ();
+  Array <octave_idx_type> ridx_out_l (dim_vector (max_len_l, 1));
+  octave_idx_type* ridx_l = ridx_out_l.fortran_vec ();
+  Array <T> data_out_l (dim_vector (max_len_l ,1));
+  T* data_l = data_out_l.fortran_vec ();
+  // Data for U
+  Array <octave_idx_type> cidx_out_u (dim_vector (n + 1, 1));
+  octave_idx_type* cidx_u = cidx_out_u.fortran_vec ();
+  Array <octave_idx_type> ridx_out_u (dim_vector (max_len_u, 1));
+  octave_idx_type* ridx_u = ridx_out_u.fortran_vec ();
+  Array <T> data_out_u (dim_vector (max_len_u, 1));
+  T* data_u = data_out_u.fortran_vec();
+
+  // Working arrays and permutation arrays
+  octave_idx_type w_len_u, w_len_l;
+  T total_sum, partial_col_sum, partial_row_sum;
+  std::set <octave_idx_type> iw_l;
+  std::set <octave_idx_type> iw_u;
+  std::set <octave_idx_type>::iterator it, it2;
+  OCTAVE_LOCAL_BUFFER (T, w_data, n);
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, iperm, n);
+  octave_idx_type* perm = perm_vec.fortran_vec ();
+  OCTAVE_LOCAL_BUFFER (octave_idx_type, uptr, n);
+
+
+  T zero = T(0);
+  cidx_l[0] = cidx_in[0];
+  cidx_u[0] = cidx_in[0];
+  /**
+  for (i = 0; i < ; i++)
+    {
+      ridx_u[i] = 0;
+      data_u[i] = 0;
+      ridx_l[i] = 0;
+      data_l[i] = 0;
+    }
+**/
+  for (i = 0; i < n; i++)
+    {
+      w_data[i] = 0;
+      perm[i] = i;
+      iperm[i] = i;
+    }
+  total_len_u = 0;
+  total_len_l = 0;
+
+  for (k = 0; k < n; k++)
+    {
+
+      for (j = cidx_in[k]; j < cidx_in[k+1]; j++)
+        {
+          p_perm = iperm[ridx_in[j]];
+          w_data[iperm[ridx_in[j]]] = data_in[j];
+          if (p_perm > k)
+            iw_l.insert (ridx_in[j]);
+          else
+            iw_u.insert (p_perm);
+        }
+
+      it = iw_u.begin ();
+      jrow = *it;
+      total_sum = zero;
+      while ((jrow < k) && (it != iw_u.end ())) 
+        {
+          if (opt == COL)
+            partial_col_sum = w_data[jrow];
+          if (w_data[jrow] != zero)
+            {
+              if (opt == ROW)
+                {
+                  partial_row_sum = w_data[jrow];
+                  tl = w_data[jrow] / data_u[uptr[jrow]];
+                }
+              for (jj = cidx_l[jrow]; jj < cidx_l[jrow+1]; jj++)
+                {
+                  p_perm = iperm[ridx_l[jj]];
+                  aux = w_data[p_perm];
+                  if (opt == ROW)
+                    {
+                      w_data[p_perm] -= tl * data_l[jj];
+                      partial_row_sum += tl * data_l[jj];
+                    }
+                  else
+                    {
+                      tl = data_l[jj] * w_data[jrow]; 
+                      w_data[p_perm] -= tl;
+                      if (opt == COL)
+                        partial_col_sum += tl;
+                    }
+
+                  if ((aux == zero) && (w_data[p_perm] != zero))
+                    {
+                      if (p_perm > k)
+                        iw_l.insert (ridx_l[jj]);
+                      else
+                        iw_u.insert (p_perm);
+                    }
+                }
+
+                // Drop element from the U part in IKJ and L part in JKI 
+                // variant (milu = [col|off])
+                if ((std::abs (w_data[jrow]) < (droptol * cols_norm[k])) 
+                    && (w_data[jrow] != zero))
+                  {
+                    if (opt == COL)
+                      total_sum += partial_col_sum;
+                    else if (opt == ROW)
+                      total_sum += partial_row_sum;
+                    w_data[jrow] = zero;
+                    it2 = it;
+                    it++;
+                    iw_u.erase (it2);
+                    jrow = *it;
+                    continue;
+                  }
+                else 
+                  // This is the element scaled by the pivot in the actual iteration
+                  if (opt == ROW)
+                    w_data[jrow] = tl;
+            }
+          jrow = *(++it);
+        }
+
+      // Search for the pivot and update iw_l and iw_u if the pivot is not the
+      // diagonal element
+      if ((thresh > zero) && (k < (n-1)))
+        {
+          maximum = std::abs (w_data[k]) / thresh;
+          max_ind = perm[k];
+          for (it = iw_l.begin (); it != iw_l.end (); ++it) 
+            {
+              p_perm = iperm[*it];
+              if (std::abs (w_data[p_perm]) > maximum)
+                {
+                  maximum = std::abs (w_data[p_perm]);
+                  max_ind = *it;
+                  it2 = it; 
+                }
+            }
+          // If the pivot is not the diagonal element update all.
+          p_perm = iperm[max_ind];
+          if (max_ind != perm[k])
+            {
+              iw_l.erase (it2);
+              if (w_data[k] != zero)
+                iw_l.insert (perm[k]);
+              else
+                  iw_u.insert (k);
+              // Swap data and update permutation vectors
+              aux = w_data[k];
+              iperm[perm[p_perm]] = k;
+              iperm[perm[k]] = p_perm;
+              c = perm[k];
+              perm[k] = perm[p_perm];
+              perm[p_perm] = c;
+              w_data[k] = w_data[p_perm];
+              w_data[p_perm] = aux;
+            }
+          
+      }              
+
+      // Drop elements in the L part in the IKJ and from the U part in the JKI
+      // version.
+      it = iw_l.begin ();
+      while (it != iw_l.end ()) 
+        {
+          p_perm = iperm[*it];
+          if (droptol > zero)
+            if (std::abs (w_data[p_perm]) < (droptol * cols_norm[k]))
+              {
+                if (opt != OFF)
+                  total_sum += w_data[p_perm];
+                w_data[p_perm] = zero;
+                it2 = it;
+                it++;
+                iw_l.erase (it2);
+                continue;
+              }
+
+          it++;
+        }
+
+      // If milu =[row|col] sumation is preserved --> Compensate diagonal element.
+      if (opt != OFF)
+        {
+          if ((total_sum > zero) && (w_data[k] == zero))
+            iw_u.insert (k);
+          w_data[k] += total_sum;
+        }
+          
+
+
+      // Check if the pivot is zero and if udiag is active.
+      // NOTE: If the pivot == 0 and udiag is active, then if milu = [col|row]
+      //       will not preserve the row sum for that column/row.
+      if (w_data[k] == zero)
+        {
+          if (udiag == 1)
+            {
+              w_data[k] = droptol;
+              iw_u.insert (k);
+            }
+          else
+            {
+              error ("ilutp: There is a pivot equal to zero.");
+              break;
+            }
+        }
+
+      // Scale the elements on the L part for IKJ version (milu = [col|off])  
+      if (opt != ROW)
+        for (it = iw_l.begin (); it != iw_l.end (); ++it) 
+          {
+              p_perm = iperm[*it];
+              w_data[p_perm] = w_data[p_perm] / w_data[k];
+          }
+      
+
+      if ((max_len_u - total_len_u) < n)
+        {
+          max_len_u += (0.1 * max_len_u) > n ? 0.1 * max_len_u : n;
+          data_out_u.resize (dim_vector (max_len_u, 1));
+          data_u = data_out_u.fortran_vec ();
+          ridx_out_u.resize (dim_vector (max_len_u, 1));
+          ridx_u = ridx_out_u.fortran_vec ();
+        }
+
+      if ((max_len_l - total_len_l) < n)
+        {
+          max_len_l += (0.1 * max_len_l) > n ? 0.1 * max_len_l : n;
+          data_out_l.resize (dim_vector (max_len_l, 1));
+          data_l = data_out_l.fortran_vec ();
+          ridx_out_l.resize (dim_vector (max_len_l, 1));
+          ridx_l = ridx_out_l.fortran_vec ();
+        }
+
+      // Expand working vector into U.
+      w_len_u = 0;
+      for (it = iw_u.begin (); it != iw_u.end (); ++it)
+        {
+          if (w_data[*it] != zero)
+            {
+              data_u[total_len_u + w_len_u] = w_data[*it];
+              ridx_u[total_len_u + w_len_u] = *it;
+              w_len_u++;
+            }
+          w_data[*it] = 0;
+        }
+      total_len_u += w_len_u;
+      if (opt == ROW)
+        uptr[k] = total_len_u -1;
+      cidx_u[k+1] = cidx_u[k] - cidx_u[0] + w_len_u;
+
+      // Expand working vector into L.
+      w_len_l = 0;
+      for (it = iw_l.begin (); it != iw_l.end (); ++it)
+        {
+          p_perm = iperm[*it];
+          if (w_data[p_perm] != zero)
+            {
+              data_l[total_len_l + w_len_l] = w_data[p_perm];
+              ridx_l[total_len_l + w_len_l] = *it;
+              w_len_l++;
+            }
+          w_data[*it] = 0;
+        }
+      total_len_l += w_len_l;
+      cidx_l[k+1] = cidx_l[k] - cidx_l[0] + w_len_l;
+
+      iw_l.clear ();
+      iw_u.clear ();
+    }
+
+  if (!error_state)
+    {
+      octave_matrix_t *L_ptr; 
+      octave_matrix_t *U_ptr;
+      octave_matrix_t diag (n, n, n);
+      
+      // L and U are interchanged if milu = 'row'. It is a matter
+      // of nomenclature to re-use code with both IKJ and JKI
+      // versions of the algorithm.
+      if (opt == ROW)
+        {
+          L_ptr = &U;
+          U_ptr = &L;
+          L = octave_matrix_t (n, n, total_len_u - n);
+          U = octave_matrix_t (n, n, total_len_l);
+        }
+      else
+        {
+          L_ptr = &L;
+          U_ptr = &U;
+          L = octave_matrix_t (n, n, total_len_l);
+          U = octave_matrix_t (n, n, total_len_u);
+        }
+
+      for (i = 0; i <= n; i++)
+        {
+          L_ptr->cidx (i) = cidx_l[i];
+          U_ptr->cidx (i) = cidx_u[i];
+          if (opt == ROW)
+            U_ptr->cidx (i) -= i;
+        }
+
+      for (octave_idx_type i = 0; i < n; i++) 
+        {
+          if (opt == ROW)
+            diag.elem (i,i) = data_u[uptr[i]];
+          j = cidx_l[i];
+
+          while (j < cidx_l[i+1])
+            {
+              L_ptr->ridx (j) = ridx_l[j];
+              L_ptr->data (j) = data_l[j];
+              j++;
+            }
+          j = cidx_u[i];
+
+          while (j < cidx_u[i+1])
+            {
+              c = j;
+              if (opt == ROW)
+                {
+                  // The diagonal is removed from from L if milu = 'row'
+                  // That is because is convenient to have it inside 
+                  // the L part to carry out the process.
+                  if (ridx_u[j] == i)
+                    {
+                      j++;
+                      continue;
+                    }
+                  else
+                    c -= i;
+                }
+              U_ptr->data (c) = data_u[j];
+              U_ptr->ridx (c) = ridx_u[j];
+              j++;
+            }
+        }
+
+      if (opt == ROW) 
+        {
+          U = U.transpose ();
+          // The diagonal, conveniently permuted is added to U
+          U += diag.index (idx_vector::colon, perm_vec);
+          L = L.transpose ();
+        }
+    }
+}
+
+DEFUN_DLD (ilutp, args, nargout, "-*- texinfo -*-\n\
+@deftypefn  {Loadable Function} {[@var{L}, @var{U}] =} ilutp (@var{A})\n\
+@deftypefnx {Loadable Function} {[@var{L}, @var{U}] =} ilutp (@var{A}, \
+@var{droptol}, @var{thresh}, @var{milu}, @var{udiag})\n\
+@deftypefnx {Loadable Function} {[@var{L}, @var{U}, @var{P}] =} ilutp (@var{A})\n\
+@deftypefnx {Loadable Function} {[@var{L}, @var{U}, @var{P}] =} ilutp \
+(@var{A}, @var{droptol}, @var{thresh}, @var{milu}, @var{udiag})\n\
+\n\
+Computes the incomplete LU-factorization (ILU) with threshold and pivoting.\n\
+@code{[@var{L}, @var{U}] = ilutp (@var{A})} computes the default version of\n\
+ILU-factorization with threshold ILUT of @var{A}, such that \
+@code{@var{L} * @var{U}} is an approximation of the square sparse matrix \
+@var{A}. Pivoting is performed. Parameter @var{droptol} controls the fill-in of \
+output matrices. Default @var{droptol} = 0. Parameter @var{milu} = ['off'|'row'|'col'] \
+set if no row nor column sums are preserved, row sums are preserved or column sums are \
+preserved respectively. There are also additional diferences in the output matrices \
+depending on @var{milu} parameter. Default milu = 'off'. @var{thresh} controls the \
+selection of the pivot. Default @var{thresh} = 0. Parameter @var{udiag} indicates if \
+there will be replacement of 0s in the upper triangular factor with the value of \
+@var{droptol}. Default @var{udiag} = 0.\n\
+\n\
+For a full description of ILUTP behaviour and its options see ilu documentation.\n\
+\n\
+For more information about the algorithms themselves see:\n\n\
+[1] Saad, Yousef: Iterative Methods for Sparse Linear Systems. Second Edition. \
+Minneapolis, Minnesota: Siam 2003.\n\
+\n\
+@seealso{ilu, ilu0, iluc, ichol}\n\
+@end deftypefn")
+{
+  octave_value_list retval;
+
+  int nargin = args.length ();
+  std::string milu = "";
+  double droptol, thresh;
+  double udiag;
+
+
+  if (nargout < 2 || nargout > 3 || nargin < 1 || nargin > 5)
+    {
+      print_usage ();
+      return retval;
+    }
+
+  // To be matlab compatible 
+  if (args (0).is_empty ())
+    {
+      retval (0) = octave_value (SparseMatrix ());
+      retval (1) = octave_value (SparseMatrix ());
+      if (nargout == 3)
+        retval (2) = octave_value (SparseMatrix ()); 
+      return retval;
+    }
+
+  if (args (0).is_scalar_type () || !args (0).is_sparse_type () )
+    error ("ilutp: 1. parameter must be a sparse square matrix.");
+
+  if (! error_state && (nargin >= 2))
+    {
+      droptol = args (1).double_value ();
+      if (error_state || (droptol < 0) || ! args (1).is_real_scalar ())
+        error ("ilutp: 2. parameter must be a positive scalar.");
+    }
+
+  if (! error_state && (nargin >= 3))
+    {
+      thresh = args (2).double_value ();
+      if (error_state || !args (2).is_real_scalar () || (thresh < 0) || thresh > 1)
+        error ("ilutp: 3. parameter must be a scalar 0 <= thresh <= 1.");
+    }
+
+  if (! error_state && (nargin >= 4))
+    {
+      milu = args (3).string_value ();
+      if (error_state || !(milu == "row" || milu == "col" || milu == "off"))
+        error ("ilutp: 3. parameter must be 'row', 'col' or 'off' character string.");
+    }
+
+  if (! error_state && (nargin == 5))
+    {
+      udiag = args (4).double_value ();
+      if (error_state || ! args (4).is_real_scalar () || ((udiag != 0) 
+          && (udiag != 1)))
+        error ("ilutp: 5. parameter must be a scalar with value 1 or 0.");
+    }
+
+  if (! error_state)
+    {
+      octave_value_list param_list;
+      octave_idx_type nnz_u, nnz_l;
+      if (!args (0).is_complex_type ())
+        {
+          Array <double> rc_norm;
+          SparseMatrix sm = args (0).sparse_matrix_value ();
+          param_list.append (sm);
+          nnz_u =  (feval ("triu", param_list)(0).sparse_matrix_value ()).nnz (); 
+          param_list.append (-1);
+          nnz_l =  (feval ("tril", param_list)(0).sparse_matrix_value ()).nnz (); 
+          if (milu == "row")
+            param_list (1) = "rows";
+          else
+            param_list (1) = "cols";
+          rc_norm = feval ("norm", param_list)(0).vector_value ();
+          param_list.clear ();
+          Array <octave_idx_type> perm (dim_vector (sm.cols (), 1)); 
+          SparseMatrix U;
+          SparseMatrix L;
+          ilu_tp <SparseMatrix, double> (sm, L, U, nnz_u, nnz_l, rc_norm.fortran_vec (),
+                                         perm, droptol, thresh, milu, udiag);
+          if (! error_state)
+            {
+              param_list.append (octave_value (L.cols ()));
+              SparseMatrix eye = feval ("speye", param_list)(0).sparse_matrix_value ();
+              if (milu == "row")
+                {
+                  retval (0) = octave_value (L + eye);
+                  if (nargout == 2) 
+                    retval (1) = octave_value (U);
+                  else if (nargout == 3)
+                    {
+                     retval (1) = octave_value (U.index (idx_vector::colon, perm));
+                     retval (2) = octave_value (eye.index (idx_vector::colon, perm));
+                    }
+                }
+              else
+                {
+                  retval (1) = octave_value (U);
+                  if (nargout == 2) 
+                    retval (0) = octave_value (L + eye.index (perm, idx_vector::colon));
+                  else if (nargout == 3)
+                    {
+                      retval (0) = octave_value (L.index (perm, idx_vector::colon)  + eye);
+                      retval (2) = octave_value (eye.index (perm, idx_vector::colon));
+                    }
+                }
+            }
+        }
+      else
+        {
+          Array <Complex> rc_norm;
+          SparseComplexMatrix sm = args (0).sparse_complex_matrix_value ();
+          param_list.append (sm);
+          nnz_u =  feval ("triu", param_list)(0).sparse_complex_matrix_value ().nnz (); 
+          param_list.append (-1);
+          nnz_l =  feval ("tril", param_list)(0).sparse_complex_matrix_value ().nnz (); 
+          if (milu == "row")
+            param_list (1) = "rows";
+          else
+            param_list (1) = "cols";
+          rc_norm = feval ("norm", param_list)(0).complex_vector_value ();
+          Array <octave_idx_type> perm (dim_vector (sm.cols (), 1)); 
+          param_list.clear ();
+          SparseComplexMatrix U;
+          SparseComplexMatrix L;
+          ilu_tp < SparseComplexMatrix, Complex> 
+                  (sm, L, U, nnz_u, nnz_l, rc_norm.fortran_vec (), perm, 
+                   Complex (droptol), Complex (thresh), milu, udiag);
+
+          if (! error_state)
+            {
+              param_list.append (octave_value (L.cols ()));
+              SparseComplexMatrix eye = feval ("speye",
+                                               param_list)(0).sparse_complex_matrix_value ();
+              if (milu == "row")
+                {
+                  retval (0) = octave_value (L + eye);
+                  if (nargout == 2) 
+                    retval (1) = octave_value (U);
+                  else if (nargout == 3)
+                    {
+                     retval (1) = octave_value (U.index (idx_vector::colon, perm));
+                     retval (2) = octave_value (eye.index (idx_vector::colon, perm));
+                    }
+                }
+              else
+                {
+                  retval (1) = octave_value (U);
+                  if (nargout == 2) 
+                    retval (0) = octave_value (L + eye.index (perm, idx_vector::colon)) ;
+                  else if (nargout == 3)
+                    {
+                      retval (0) = octave_value (L.index (perm, idx_vector::colon)  + eye);
+                      retval (2) = octave_value (eye.index (perm, idx_vector::colon));
+                    }
+                }
+            }
+        }
+
+    }
+
+  return retval;
+}
+
+/* Test cases
+%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
+%! n_tiny = 5;
+%! n_small = 40;
+%! n_medium = 600;
+%! n_large = 10000;
+%! A_tiny = spconvert([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
+%! A_tiny(1,1) += 1i;
+%! A_small = sprand(n_small, n_small, 1/n_small) + i * sprand(n_small, n_small, 1/n_small) + speye (n_small);
+%! A_medium = sprand(n_medium, n_medium, 1/n_medium) + i * sprand(n_medium, n_medium, 1/n_medium) + speye (n_medium);
+%! A_large = sprand(n_large, n_large, 1/n_large/10) + i * sprand(n_large, n_large, 1/n_large/10) + speye (n_large);
+%!# Input validation tests
+%!test 
+%!error [L,U] = ilutp(A_tiny, -1);
+%!error [L,U] = ilutp(A_tiny, [1,2]);
+%!error [L,U] = ilutp(A_tiny, 2i);
+%!error [L,U] = ilutp(A_tiny, 1, -1);
+%!error [L,U] = ilutp(A_tiny, 1, 2);
+%!error [L,U] = ilutp(A_tiny, 1, [1, 0]);
+%!error [L,U] = ilutp(A_tiny, 1, 1, 'foo');
+%!error [L,U] = ilutp(A_tiny, 1, 1, '');
+%!error [L,U] = ilutp(A_tiny, 1, 1, 1);
+%!error [L,U] = ilutp(A_tiny, 1, 1, [1,2]);
+%!error [L,U] = ilutp(A_tiny, 1, 1, 'off', 0.5);
+%!error [L,U] = ilutp(A_tiny, 1, 1, 'off', -1);
+%!error [L,U] = ilutp(A_tiny, 1, 1, 'off', 2);
+%!error [L,U] = ilutp(A_tiny, 1, 1, 'off', [1 ,0]);
+%! [L,U] = iluc ([]);
+%! assert (isempty (L), logical (1));
+%! assert (isempty (U), logical (1));
+%!error [L,U] = iluc (0+0i);
+%!error [L,U] = iluc (0i);
+%!error [L,U] = iluc (sparse (0+0i));
+%!error [L,U] = iluc (sparse (0i));
+%! [L,U] = iluc (sparse (2+0i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2));
+%! [L,U] = iluc (sparse (2+2i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2+2i));
+%! [L,U] = iluc (sparse (2i));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2i));
+%!test 
+%! [L,U] = iluc (A_tiny);
+%! assert (norm (A_tiny - L * U, "fro") / norm (A_tiny, "fro"), 0, n_tiny*eps);
+%!test 
+%! [L,U] = iluc (A_small);
+%! assert (norm (A_small - L * U, "fro") / norm (A_small, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_medium);
+%! assert (norm (A_medium - L * U, "fro") / norm (A_medium, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_large);
+%! assert (norm (A_large - L * U, "fro") / norm (A_large, "fro"), 0, 1);
+*/
+
+/* Test cases for real numbers.
+%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
+%! n_tiny = 5;
+%! n_small = 40;
+%! n_medium = 600;
+%! n_large = 10000;
+%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
+%! A_small = sprand (n_small, n_small, 1/n_small) + speye (n_small);
+%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
+%! A_large = sprand (n_large, n_large, 1/n_large/10) + speye (n_large);
+%!test 
+%! [L,U] = iluc ([]);
+%! assert (isempty (L), logical (1));
+%! assert (isempty (U), logical (1));
+%!error [L,U] = iluc (0);
+%!error [L,U] = iluc (sparse (0));
+%!test 
+%! [L,U] = iluc (sparse (2));
+%! assert (L, sparse (1));
+%! assert (U, sparse (2));
+%!test 
+%! [L,U] = iluc (A_tiny);
+%! assert (norm (A_tiny - L * U, "fro") / norm (A_tiny, "fro"), 0, n_tiny*eps);
+%!test 
+%! [L,U] = iluc (A_small);
+%! assert (norm (A_small - L * U, "fro") / norm (A_small, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_medium);
+%! assert (norm (A_medium - L * U, "fro") / norm (A_medium, "fro"), 0, 1);
+%!test 
+%! [L,U] = iluc (A_large);
+%! assert (norm (A_large - L * U, "fro") / norm (A_large, "fro"), 0, 1);
+*/
--- a/libinterp/dldfcn/module-files	Tue Aug 26 08:05:42 2014 -0700
+++ b/libinterp/dldfcn/module-files	Tue Aug 12 15:58:18 2014 +0100
@@ -15,6 +15,11 @@
 convhulln.cc|$(QHULL_CPPFLAGS)|$(QHULL_LDFLAGS)|$(QHULL_LIBS)
 dmperm.cc|$(SPARSE_XCPPFLAGS)|$(SPARSE_XLDFLAGS)|$(SPARSE_XLIBS)
 fftw.cc|$(FFTW_XCPPFLAGS)|$(FFTW_XLDFLAGS)|$(FFTW_XLIBS)
+ichol0.cc
+icholt.cc
+ilu0.cc
+iluc.cc
+ilutp.cc
 qr.cc|$(QRUPDATE_CPPFLAGS) $(SPARSE_XCPPFLAGS)|$(QRUPDATE_LDFLAGS) $(SPARSE_XLDFLAGS)|$(QRUPDATE_LIBS) $(SPARSE_XLIBS)
 symbfact.cc|$(SPARSE_XCPPFLAGS)|$(SPARSE_XLDFLAGS)|$(SPARSE_XLIBS)
 symrcm.cc|$(SPARSE_XCPPFLAGS)|$(SPARSE_XLDFLAGS)|$(SPARSE_XLIBS)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/sparse/ichol.m	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,328 @@
+## Copyright (C) 2013 Kai T. Ohlhus <k.ohlhus@gmail.com>
+## Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+## 
+## This file is part of Octave.
+## 
+## Octave is free software; you can redistribute it and/or modify it under the
+## terms of the GNU General Public License as published by the Free Software
+## Foundation; either version 3 of the License, or (at your option) any later
+## version.
+## 
+## Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+## WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+## details.
+## 
+## You should have received a copy of the GNU General Public License along with
+## Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} ichol (@var{A}, @var{opts})
+## @deftypefnx {Function File} {@var{L} =} ichol (@var{A}, @var{opts})
+##
+## @code{@var{L} = ichol (@var{A})} performs the incomplete Cholesky
+## factorization of A with zero-fill.
+##
+## @code{@var{L} = ichol (@var{A}, @var{opts})} performs the incomplete Cholesky
+## factorization of A with options specified by opts.
+##
+## By default, ichol references the lower triangle of A and produces lower
+## triangular factors.
+##
+## The factor given by this routine may be useful as a preconditioner for a
+## system of linear equations being solved by iterative methods such as
+## PCG (Preconditioned conjugate gradient).
+##
+## ichol works only for sparse square matrices.
+##
+## The fields of @var{opts} must be named exactly as shown below. You can
+## include any number of these fields in the structure and define them in any
+## order. Any additional fields are ignored. Names and specifiers are case
+## sensitive.
+##
+## @table @asis
+## @item type
+## Type of factorization.
+## String indicating which flavor of incomplete Cholesky to perform. Valid
+## values of this field are @samp{nofill} and @samp{ict}. The
+## @samp{nofill} variant performs incomplete Cholesky with zero-fill [IC(0)].
+## The @samp{ict} variant performs incomplete Cholesky with threshold dropping
+## [ICT]. The default value is @samp{nofill}.
+##
+## @item droptol
+## Drop tolerance when type is @samp{ict}.
+## Nonnegative scalar used as a drop tolerance when performing ICT. Elements
+## which are smaller in magnitude than a local drop tolerance are dropped from
+## the resulting factor except for the diagonal element which is never dropped.
+## The local drop tolerance at step j of the factorization is
+## @code{norm (@var{A}(j:end, j), 1) * droptol}. @samp{droptol} is ignored if
+## @samp{type} is @samp{nofill}. The default value is 0.
+##
+## @item michol
+## Indicates whether to perform modified incomplete Cholesky.
+## Indicates whether or not modified incomplete Cholesky [MIC] is performed.
+## The field may be @samp{on} or @samp{off}. When performing MIC, the diagonal
+## is compensated for dropped elements to enforce the relationship
+## @code{@var{A} * @var{e} = @var{L} * @var{L}' * @var{e}} where
+## @code{@var{e} = ones (size (@var{A}, 2), 1))}. The default value is
+## @samp{off}.
+##
+## @item diagcomp
+## Perform compensated incomplete Cholesky with the specified coefficient.
+## Real nonnegative scalar used as a global diagonal shift @code{@var{alpha}}
+## in forming the incomplete Cholesky factor. That is, instead of performing
+## incomplete Cholesky on @code{@var{A}}, the factorization of
+## @code{@var{A} + @var{alpha} * diag (diag (@var{A}))} is formed. The default
+## value is 0.
+##
+## @item shape
+## Determines which triangle is referenced and returned.
+## Valid values are @samp{upper} and @samp{lower}. If @samp{upper} is specified,
+## only the upper triangle of @code{@var{A}} is referenced and @code{@var{R}}
+## is constructed such that @code{@var{A}} is approximated by
+## @code{@var{R}' * @var{R}}. If @samp{lower} is specified, only the lower
+## triangle of @code{@var{A}} is referenced and @code{@var{L}} is constructed
+## such that @code{@var{A}} is approximated by @code{@var{L} * @var{L}'}. The
+## default value is @samp{lower}.
+## @end table
+##
+## EXAMPLES
+##
+## The following problem demonstrates how to factorize a sample symmetric
+## positive definite matrix with the full Cholesky decomposition and with the
+## incomplete one.
+##
+## @example
+## A = [ 0.37, -0.05,  -0.05,  -0.07;
+##      -0.05,  0.116,  0.0,   -0.05;
+##      -0.05,  0.0,    0.116, -0.05;
+##      -0.07, -0.05,  -0.05,   0.202];
+## A = sparse(A);
+## nnz(tril (A))
+## ans =  9
+## L = chol(A, "lower");
+## nnz (L)
+## ans =  10
+## norm (A - L * L', 'fro') / norm (A, 'fro')
+## ans =  1.1993e-16
+## opts.type = 'nofill';
+## L = ichol(A,opts);
+## nnz (L)
+## ans =  9
+## norm (A - L * L', 'fro') / norm (A, 'fro')
+## ans =  0.019736
+## @end example
+##
+## Another example for decomposition is finite difference matrix to solve a
+## boundary value problem on the unit square.
+##
+## @example
+## nx = 400; ny = 200;
+## hx = 1 / (nx + 1); hy = 1 / (ny + 1);
+## Dxx = spdiags ([ones(nx, 1), -2 * ones(nx, 1), ones(nx, 1)], [-1 0 1 ], nx, nx) / (hx ^ 2);
+## Dyy = spdiags ([ones(ny, 1), -2 * ones(ny, 1), ones(ny, 1)], [-1 0 1 ], ny, ny) / (hy ^ 2);
+## A = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
+## nnz (tril (A))
+## ans =  239400
+## opts.type = 'nofill';
+## L = ichol (A, opts);
+## nnz (tril (A))
+## ans =  239400
+## norm (A - L * L', 'fro') / norm (A, 'fro')
+## ans =  0.062327
+## @end example
+##
+## References for the implemented algorithms:
+##
+## [1] Saad, Yousef. "Preconditioning Techniques." Iterative Methods for Sparse Linear
+## Systems. PWS Publishing Company, 1996.
+##
+## [2] Jones, Mark T. and Plassmann, Paul E.: An Improved Incomplete Cholesky
+## Factorization (1992).
+## @end deftypefn
+
+function [L] = ichol (A, opts)
+
+  if ((nargin > 2) || (nargin < 1) || (nargout > 1))
+    print_usage ();
+  endif
+
+  % Check input matrix
+  if (isempty (A) || ~issparse(A) || ~issquare (A))
+    error ("ichol: Input A must be a non-empty sparse square matrix");
+  endif
+
+  % Check input structure, otherwise set default values
+  if (nargin == 2)
+    if (~isstruct (opts))
+      error ("ichol: Input \"opts\" must be a valid structure.");
+    endif
+  else
+    opts = struct ();
+  endif
+
+  if (~isfield (opts, "type"))
+    opts.type = "nofill"; % set default
+  else
+    type = tolower (getfield (opts, "type"));
+    if ((strcmp (type, "nofill") == 0)
+        && (strcmp (type, "ict") == 0))
+      error ("ichol: Invalid field \"type\" in input structure.");
+    else
+      opts.type = type;
+    endif
+  endif
+
+  if (~isfield (opts, "droptol"))
+    opts.droptol = 0; % set default
+  else
+    if (~isscalar (opts.droptol) || (opts.droptol < 0))
+      error ("ichol: Invalid field \"droptol\" in input structure.");
+    endif
+  endif
+
+  michol = "";
+  if (~isfield (opts, "michol"))
+    opts.michol = "off"; % set default
+  else
+    michol = tolower (getfield (opts, "michol"));
+    if ((strcmp (michol, "off") == 0) 
+        && (strcmp (michol, "on") == 0))
+      error ("ichol: Invalid field \"michol\" in input structure.");
+    else
+      opts.michol = michol;
+    endif
+  endif
+
+  if (~isfield (opts, "diagcomp"))
+    opts.diagcomp = 0; % set default
+  else
+    if (~isscalar (opts.diagcomp) || (opts.diagcomp < 0))
+      error ("ichol: Invalid field \"diagcomp\" in input structure.");
+    endif
+  endif
+
+  if (~isfield (opts, "shape"))
+    opts.shape = "lower"; % set default
+  else
+    shape = tolower (getfield (opts, "shape"));
+    if ((strcmp (shape, "lower") == 0) 
+        && (strcmp (shape, "upper") == 0))
+      error ("ichol: Invalid field \"shape\" in input structure.");
+    else
+      opts.shape = shape;
+    endif
+  endif
+
+  % Prepare input for specialized ICHOL
+  A_in = [];
+  if (opts.diagcomp > 0)
+    A += opts.diagcomp * diag (diag (A));
+  endif
+  if (strcmp (opts.shape, "upper") == 1)
+    disp("entro");
+    A_in = triu (A);
+    A_in = A_in';
+
+  else
+    A_in = tril (A);
+  endif
+
+  % Delegate to specialized ICHOL
+  switch (opts.type)
+    case "nofill"
+      L  = ichol0 (A_in,  opts.michol);
+    case "ict"
+      L = icholt (A_in, opts.droptol, opts.michol);
+    otherwise
+      printf ("The input structure is invalid.\n");
+  endswitch
+
+  if (strcmp (opts.shape, "upper") == 1)
+    L = L';
+  endif
+  
+
+endfunction
+
+%!shared A1, A2
+%! A1 = [ 0.37, -0.05,  -0.05,  -0.07;
+%!      -0.05,  0.116,  0.0,   -0.05;
+%!      -0.05,  0.0,    0.116, -0.05;
+%!      -0.07, -0.05,  -0.05,   0.202];
+%! A1 = sparse(A1);
+%! nx = 400; ny = 200;
+%! hx = 1 / (nx + 1); hy = 1 / (ny + 1);
+%! Dxx = spdiags ([ones(nx, 1), -2 * ones(nx, 1), ones(nx, 1)], [-1 0 1 ], nx, nx) / (hx ^ 2);
+%! Dyy = spdiags ([ones(ny, 1), -2 * ones(ny, 1), ones(ny, 1)], [-1 0 1 ], ny, ny) / (hy ^ 2);
+%! A2 = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
+%!
+%!test
+%!error ichol ([]);
+%!error ichol (0);
+%!error ichol (-0);
+%!error ichol (1);
+%!error ichol (-1);
+%!error ichol (i);
+%!error ichol (-i);
+%!error ichol (1 + 1i);
+%!error ichol (1 - 1i);
+%!error ichol (sparse (0));
+%!error ichol (sparse (-0));
+%!error ichol (sparse (-1));
+%!error ichol (sparse (-1));
+%!
+%!test
+%! opts.type = "nofill";
+%! opts.michol = "off";
+%! assert (nnz (tril (A1)), nnz (ichol (A1, opts)));
+%! assert (nnz (tril (A2)), nnz (ichol (A2, opts)));
+%!
+%!test
+%! opts.type = "nofill";
+%! opts.michol = "off";
+%! L = ichol (A1, opts);
+%! assert (norm (A1 - L * L', 'fro') / norm (A1, 'fro'), 0.01, 0.01);
+%! L = ichol (A2, opts);
+%! assert (norm (A2 - L * L', 'fro') / norm (A2, 'fro'), 0.06, 0.01);
+%!
+%%!test
+%%! opts.type = "nofill";
+%%! opts.michol = "off";
+%%! opts.shape = "upper";
+%%! U = ichol (A1, opts);
+%%! assert (norm (A1 - U' * U, 'fro') / norm (A1, 'fro'), 0.01, 0.01);
+%!
+%!test
+%! opts.type = "nofill";
+%! opts.michol = "off";
+%! opts.shape = "lower";
+%! L = ichol (A1, opts);
+%! assert (norm (A1 - L * L', 'fro') / norm (A1, 'fro'), 0.01, 0.01);
+%!
+%!test
+%! opts.type = "nofill";
+%! opts.michol = "on";
+%! L = ichol (A1, opts);
+%! assert (norm (A1 - L * L', 'fro') / norm (A1, 'fro'), 0.02, 0.01);
+%!
+%!test
+%! opts.type = "nofill";
+%! opts.michol = "on";
+%! opts.diagcomp = 3e-3;
+%! L = ichol (A1, opts);
+%! assert (norm (A1 - L * L', 'fro') / norm (A1, 'fro'), 0.02, 0.01);
+%!
+%!test
+%! opts.type = "ict";
+%! opts.michol = "off";
+%! opts.droptol = 1e-4;
+%! L = ichol (A1, opts);
+%! assert (norm (A1 - L * L', 'fro') / norm (A1, 'fro'), eps, eps);
+%!
+%!test
+%! opts.type = "ict";
+%! opts.michol = "off";
+%! opts.droptol = 1e-4;
+%! L = ichol (A2, opts);
+%! assert (norm (A2 - L * L', 'fro') / norm (A2, 'fro'), 5e-4, 5e-4);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/sparse/ilu.m	Tue Aug 12 15:58:18 2014 +0100
@@ -0,0 +1,308 @@
+## Copyright (C) 2013 Kai T. Ohlhus <k.ohlhus@gmail.com>
+## Copyright (C) 2014 Eduardo Ramos Fernández <eduradical951@gmail.com>
+##
+## 
+## This file is part of Octave.
+## 
+## Octave is free software; you can redistribute it and/or modify it under the
+## terms of the GNU General Public License as published by the Free Software
+## Foundation; either version 3 of the License, or (at your option) any later
+## version.
+## 
+## Octave is distributed in the hope that it will be useful, but WITHOUT ANY
+## WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+## details.
+## 
+## You should have received a copy of the GNU General Public License along with
+## Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} ilu (@var{A}, @var{setup})
+## @deftypefnx {Function File} {[@var{L}, @var{U}] =} ilu (@var{A}, @var{setup})
+## @deftypefnx {Function File} {[@var{L}, @var{U}, @var{P}] =} ilu (@var{A}, @var{setup})
+## ilu produces a unit lower triangular matrix, an upper triangular matrix, and
+## a permutation matrix.
+##
+## These incomplete factorizations may be useful as preconditioners for a system
+## of linear equations being solved by iterative methods such as BICG
+## (BiConjugate Gradients), GMRES (Generalized Minimum Residual Method).
+##
+## @code{ilu (@var{A}, @var{setup})} computes the incomplete LU factorization
+## of @var{A}. @var{setup} is an input structure with up to five setup options.
+## The fields must be named exactly as shown below. You can include any number
+## of these fields in the structure and define them in any order. Any
+## additional fields are ignored.
+##
+## @table @asis
+## @item type
+## Type of factorization. Values for type include:
+##
+## @table @asis
+## @item @samp{nofill}
+## Performs ILU factorization with 0 level of fill in, known as ILU(0). With
+## type set to @samp{nofill}, only the milu setup option is used; all other
+## fields are ignored.
+## @item @samp{crout}
+## Performs the Crout version of ILU factorization, known as ILUC. With type
+## set to @samp{crout}, only the droptol and milu setup options are used; all
+## other fields are ignored.
+## @item @samp{ilutp}
+## (default) Performs ILU factorization with threshold and pivoting.
+## @end table
+##
+## If type is not specified, the ILU factorization with pivoting ILUTP is
+## performed. Pivoting is never performed with type set to @samp{nofill} or
+## @samp{crout}.
+##
+## @item droptol
+## Drop tolerance of the incomplete LU factorization. droptol is a non-negative
+## scalar. The default value is 0, which produces the complete LU factorization.
+##
+## The nonzero entries of U satisfy
+##
+## @code{abs (@var{U}(i,j)) >= droptol * norm ((@var{A}:,j))}
+##
+## with the exception of the diagonal entries, which are retained regardless of
+## satisfying the criterion. The entries of @var{L} are tested against the
+## local drop tolerance before being scaled by the pivot, so for nonzeros in
+## @var{L}
+##
+## @code{abs(@var{L}(i,j)) >= droptol * norm(@var{A}(:,j))/@var{U}(j,j)}.
+##
+## @item milu
+## Modified incomplete LU factorization. Values for milu
+## include:
+## @table @asis
+## @item @samp{row}
+## Produces the row-sum modified incomplete LU factorization. Entries from the
+## newly-formed column of the factors are subtracted from the diagonal of the
+## upper triangular factor, @var{U}, preserving column sums. That is,
+## @code{@var{A} * e = @var{L} * @var{U} * e}, where e is the vector of ones.
+## @item @samp{col}
+## Produces the column-sum modified incomplete LU factorization. Entries from
+## the newly-formed column of the factors are subtracted from the diagonal of
+## the upper triangular factor, @var{U}, preserving column sums. That is,
+## @code{e'*@var{A} = e'*@var{L}*@var{U}}.
+## @item @samp{off}
+## (default) No modified incomplete LU factorization is produced.
+## @end table
+##
+## @item udiag
+## If udiag is 1, any zeros on the diagonal of the upper
+## triangular factor are replaced by the local drop tolerance. The default is 0.
+##
+## @item thresh
+## Pivot threshold between 0 (forces diagonal pivoting) and 1,
+## the default, which always chooses the maximum magnitude entry in the column
+## to be the pivot.
+## @end table
+##
+## @code{ilu (@var{A},@var{setup})} returns
+## @code{@var{L} + @var{U} - speye (size (@var{A}))}, where @var{L} is a unit
+## lower triangular matrix and @var{U} is an upper triangular matrix.
+##
+## @code{[@var{L}, @var{U}] = ilu (@var{A},@var{setup})} returns a unit lower
+## triangular matrix in @var{L} and an upper triangular matrix in @var{U}. When
+## SETUP.type = 'ilutp', the role of @var{P} is determined by the value of
+## SETUP.milu. For SETUP.type == 'ilutp', one of the factors is permuted
+## based on the value of SETUP.milu. When SETUP.milu == 'row', U is a column 
+## permuted upper triangular factor. Otherwise, L is a row-permuted unit lower 
+## triangular factor.
+##
+## @code{[@var{L}, @var{U}, @var{P}] = ilu (@var{A},@var{setup})} returns a
+## unit lower triangular matrix in @var{L}, an upper triangular matrix in
+## @var{U}, and a permutation matrix in @var{P}. When SETUP.milu ~= 'row', @var{P} 
+## is returned such that @var{L} and @var{U} are incomplete factors of @var{P}*@var{A}.
+## When SETUP.milu == 'row', @var{P} is returned such that and @var{U} are 
+## incomplete factors of A*P.
+##
+## @strong{NOTE}: ilu works on sparse square matrices only.
+##
+## EXAMPLES
+##
+## @example
+## A = gallery('neumann', 1600) + speye(1600);
+## setup.type = 'nofill';
+## nnz(A)
+## ans = 7840
+##
+## nnz(lu(A))
+## ans = 126478
+##
+## nnz(ilu(A,setup))
+## ans = 7840
+## @end example
+##
+## This shows that @var{A} has 7840 nonzeros, the complete LU factorization has
+## 126478 nonzeros, and the incomplete LU factorization, with 0 level of
+## fill-in, has 7840 nonzeros, the same amount as @var{A}. Taken from:
+## http://www.mathworks.com/help/matlab/ref/ilu.html
+##
+## @example
+## A = gallery ('wathen', 10, 10);
+## b = sum (A,2); 
+## tol = 1e-8; 
+## maxit = 50;
+## opts.type = 'crout';
+## opts.droptol = 1e-4;
+## [L, U] = ilu (A, opts);
+## x = bicg (A, b, tol, maxit, L, U);
+## norm(A * x - b, inf)
+## @end example
+##
+## This example uses ILU as preconditioner for a random FEM-Matrix, which has a
+## bad condition. Without @var{L} and @var{U} BICG would not converge.
+##
+## @end deftypefn
+
+function [L, U, P] = ilu (A, setup)
+
+  if ((nargin > 2) || (nargin < 1) || (nargout > 3))
+    print_usage ();
+  endif
+
+  % Check input matrix
+  if (~issparse(A) || ~issquare (A))
+    error ("ilu: Input A must be a sparse square matrix.");
+  endif
+
+  % Check input structure, otherwise set default values
+  if (nargin == 2)
+    if (~isstruct (setup))
+      error ("ilu: Input 'setup' must be a valid structure.");
+    endif
+  else
+    setup = struct ();
+  endif
+
+  if (~isfield (setup, "type"))
+    setup.type = "nofill"; % set default
+  else
+    type = tolower (getfield (setup, "type"));
+    if ((strcmp (type, "nofill") == 0)
+        && (strcmp (type, "crout") == 0)
+        && (strcmp (type, "ilutp") == 0))
+      error ("ilu: Invalid field \"type\" in input structure.");
+    else
+      setup.type = type;
+    endif
+  endif
+
+  if (~isfield (setup, "droptol"))
+    setup.droptol = 0; % set default
+  else
+    if (~isscalar (setup.droptol) || (setup.droptol < 0))
+      error ("ilu: Invalid field \"droptol\" in input structure.");
+    endif
+  endif
+
+  if (~isfield (setup, "milu"))
+    setup.milu = "off"; % set default
+  else
+    milu = tolower (getfield (setup, "milu"));
+    if ((strcmp (milu, "off") == 0) 
+        && (strcmp (milu, "col") == 0)
+        && (strcmp (milu, "row") == 0))
+      error ("ilu: Invalid field \"milu\" in input structure.");
+    else
+      setup.milu = milu;
+    endif
+  endif
+
+  if (~isfield (setup, "udiag"))
+    setup.udiag = 0; % set default
+  else
+    if (~isscalar (setup.udiag) || ((setup.udiag ~= 0) && (setup.udiag ~= 1)))
+      error ("ilu: Invalid field \"udiag\" in input structure.");
+    endif
+  endif
+
+  if (~isfield (setup, "thresh"))
+    setup.thresh = 1; % set default
+  else
+    if (~isscalar (setup.thresh) || (setup.thresh < 0) || (setup.thresh > 1))
+      error ("ilu: Invalid field \"thresh\" in input structure.");
+    endif
+  endif
+
+  n = length (A);
+
+  % Delegate to specialized ILU
+  switch (setup.type)
+    case "nofill"
+        [L, U] = ilu0 (A, setup.milu);
+        if (nargout == 3)
+          P = speye (length (A));
+        endif
+    case "crout"
+        [L, U] = iluc (A, setup.droptol, setup.milu);
+        if (nargout == 3)
+          P = speye (length (A));
+        endif
+    case "ilutp"
+        if (nargout == 2)
+          [L, U]  = ilutp (A, setup.droptol, setup.thresh, setup.milu, setup.udiag);
+        elseif (nargout == 3)
+          [L, U, P]  = ilutp (A, setup.droptol, setup.thresh, setup.milu, setup.udiag);
+        endif
+    otherwise
+      printf ("The input structure is invalid.\n");
+  endswitch
+
+  if (nargout == 1)
+    L = L + U - speye (n);
+  endif
+
+endfunction
+
+%!shared n, dtol, A
+%! n = 1600;
+%! dtol = 0.1;
+%! A = gallery ('neumann', n) + speye (n);
+%!test
+%! setup.type = 'nofill';
+%! assert (nnz (ilu (A, setup)), 7840);
+%!test
+%! # This test is taken from the mathworks and should work for full support.
+%! setup.type = 'crout';
+%! setup.milu = 'row';
+%! setup.droptol = dtol;
+%! [L, U] = ilu (A, setup);
+%! e = ones (size (A,2),1);
+%! assert (norm (A*e - L*U*e), 1e-14, 1e-14);
+%!test
+%! setup.type = 'crout';
+%! setup.droptol = dtol;
+%! [L, U] = ilu(A,setup);
+%! assert (norm (A - L * U, 'fro') / norm (A, 'fro'), 0.05, 1e-2);
+%!test
+%! setup.type = 'crout';
+%! setup.droptol = dtol;
+%! [L, U] = ilu (A, setup);
+%! for j = 1:n
+%!   cmp_value = dtol * norm (A(:, j)) / 2;
+%!   non_zeros = nonzeros (U(:, j));
+%!   for i = 1:length (non_zeros);
+%!     assert (abs (non_zeros (i)) >= cmp_value, logical (1));
+%!   endfor
+%! endfor
+%!test
+%! setup.type = 'crout';
+%! setup.droptol = dtol;
+%! [L, U] = ilu (A, setup);
+%! for j = 1:n
+%!   cmp_value = dtol * norm (A(:, j)) / 2;
+%!   non_zeros = nonzeros (U(:, j));
+%!   for i = 1:length (non_zeros);
+%!     assert (abs (non_zeros (i)) >= cmp_value, logical (1));
+%!   endfor
+%! endfor
+%!test
+%! setup.type = 'crout';
+%! setup.droptol = 0;
+%! [L1, U1] = ilu (A, setup);
+%! setup.type = 'ilutp';
+%! [L2, U2] = ilu (A, setup);
+%! assert (norm (L1 - L2, 'fro') / norm (L1, 'fro'), 0, eps);
+%! assert (norm (U1 - U2, 'fro') / norm (U1, 'fro'), 0, eps);