view libinterp/corefcn/svd.cc @ 22204:469c817eb256

svd: reduce code duplication with more use of template and macro. * liboctave/numeric/svd.cc, liboctave/numeric/svd.h: remove unused constructor with reference for int (info). This allows to move all of the constructor into a single template, so remove init(). Two new methods, gesvd and gesdd, are fully specialized but the main hunck of code are the long list of arguments. Scope type and drive enums to the svd class for clarity, and rename member names. Add a new member for the drive used. * libinterp/corefcn/svd.cc: fix typenames for the svd enums which are now scoped. * CMatrix.cc, dMatrix.cc, fCMatrix.cc, fMatrix.cc: fix typenames for the svd enums which are now scoped.
author Carnë Draug <carandraug@octave.org>
date Thu, 04 Aug 2016 20:20:27 +0100
parents 112b20240c87
children 6ca3acf5fad8
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "svd.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "pr-output.h"
#include "utils.h"
#include "variables.h"

static std::string Vsvd_driver = "gesvd";

template <typename T>
static typename svd<T>::Type
svd_type (int nargin, int nargout)
{
  return ((nargout == 0 || nargout == 1)
          ? svd<T>::Type::sigma_only
          : (nargin == 2) ? svd<T>::Type::economy : svd<T>::Type::std);
}

template <typename T>
static typename svd<T>::Driver
svd_driver (void)
{
  return Vsvd_driver == "gesvd" ? svd<T>::Driver::GESVD : svd<T>::Driver::GESDD;
}

DEFUN (svd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{s} =} svd (@var{A})
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A})
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, @var{econ})
@cindex singular value decomposition
Compute the singular value decomposition of @var{A}
@tex
$$
 A = U S V^{\dagger}
$$
@end tex
@ifnottex

@example
A = U*S*V'
@end example

@end ifnottex

The function @code{svd} normally returns only the vector of singular values.
When called with three return values, it computes
@tex
$U$, $S$, and $V$.
@end tex
@ifnottex
@var{U}, @var{S}, and @var{V}.
@end ifnottex
For example,

@example
svd (hilb (3))
@end example

@noindent
returns

@example
@group
ans =

  1.4083189
  0.1223271
  0.0026873
@end group
@end example

@noindent
and

@example
[u, s, v] = svd (hilb (3))
@end example

@noindent
returns

@example
@group
u =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867

s =

  1.40832  0.00000  0.00000
  0.00000  0.12233  0.00000
  0.00000  0.00000  0.00269

v =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867
@end group
@end example

If given a second argument, @code{svd} returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of @var{U} or
@var{V}.
@seealso{svd_driver, svds, eig, lu, chol, hess, qr, qz}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 2 || nargout == 2 || nargout > 3)
    print_usage ();

  octave_value arg = args(0);

  if (arg.ndims () != 2)
    error ("svd: A must be a 2-D matrix");

  octave_value_list retval;

  bool isfloat = arg.is_single_type ();

  if (isfloat)
    {
      if (arg.is_real_type ())
        {
          FloatMatrix tmp = arg.float_matrix_value ();

          if (tmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          svd<FloatMatrix> result (tmp,
                                   svd_type<FloatMatrix> (nargin, nargout),
                                   svd_driver<FloatMatrix> ());

          FloatDiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
      else if (arg.is_complex_type ())
        {
          FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();

          if (ctmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          svd<FloatComplexMatrix> result (ctmp,
                                          svd_type<FloatComplexMatrix> (nargin, nargout),
                                          svd_driver<FloatComplexMatrix> ());

          FloatDiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          Matrix tmp = arg.matrix_value ();

          if (tmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          svd<Matrix> result (tmp,
                              svd_type<Matrix> (nargin, nargout),
                              svd_driver<Matrix> ());

          DiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
      else if (arg.is_complex_type ())
        {
          ComplexMatrix ctmp = arg.complex_matrix_value ();

          if (ctmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          svd<ComplexMatrix> result (ctmp,
                                     svd_type<ComplexMatrix> (nargin, nargout),
                                     svd_driver<ComplexMatrix> ());

          DiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
      else
        err_wrong_type_arg ("svd", arg);
    }

  return retval;
}

/*
%!assert (svd ([1, 2; 2, 1]), [3; 1], sqrt (eps))

%!test
%! [u, s, v] = svd ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (u, [-x, -x; -x, x], sqrt (eps));
%! assert (s, [3, 0; 0, 1], sqrt (eps));
%! assert (v, [-x, x; -x, -x], sqrt (eps));

%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));

%!assert (svd (single ([1, 2; 2, 1])), single ([3; 1]), sqrt (eps ("single")))

%!test
%! [u, s, v] = svd (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (u, [-x, -x; -x, x], sqrt (eps ("single")));
%! assert (s, single ([3, 0; 0, 1]), sqrt (eps ("single")));
%! assert (v, [-x, x; -x, -x], sqrt (eps ("single")));

%!test
%! a = single ([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = single ([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = single ([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = single ([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = zeros (0, 5);
%! [u, s, v] = svd (a);
%! assert (size (u), [0, 0]);
%! assert (size (s), [0, 5]);
%! assert (size (v), [5, 5]);

%!test
%! a = zeros (5, 0);
%! [u, s, v] = svd (a, 1);
%! assert (size (u), [5, 0]);
%! assert (size (s), [0, 0]);
%! assert (size (v), [0, 0]);

%!error svd ()
%!error svd ([1, 2; 4, 5], 2, 3)
%!error [u, v] = svd ([1, 2; 3, 4])
*/

DEFUN (svd_driver, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{val} =} svd_driver ()
@deftypefnx {} {@var{old_val} =} svd_driver (@var{new_val})
@deftypefnx {} {} svd_driver (@var{new_val}, "local")
Query or set the underlying @sc{lapack} driver used by @code{svd}.

Currently recognized values are @qcode{"gesvd"} and @qcode{"gesdd"}.
The default is @qcode{"gesvd"}.

When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@seealso{svd}
@end deftypefn */)
{
  static const char *driver_names[] = { "gesvd", "gesdd", 0 };

  return SET_INTERNAL_VARIABLE_CHOICES (svd_driver, driver_names);
}

/*
%!test
%! A = [1+1i, 1-1i, 0; 0, 2, 0; 1i, 1i, 1+2i];
%! old_driver = svd_driver ("gesvd");
%! [U1, S1, V1] = svd (A);
%! svd_driver ("gesdd");
%! [U2, S2, V2] = svd (A);
%! assert (U1, U2, 5*eps);
%! assert (S1, S2, 5*eps);
%! assert (V1, V2, 5*eps);
%! svd_driver (old_driver);
*/