view libinterp/corefcn/gsvd.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 2c7a8040f4f2
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1997-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include "dMatrix.h"
#include "CMatrix.h"
#include "dDiagMatrix.h"
#include "gsvd.h"

#include "defun.h"
#include "defun-int.h"
#include "error.h"
#include "errwarn.h"
#include "utils.h"
#include "ovl.h"
#include "ov.h"

OCTAVE_NAMESPACE_BEGIN

template <typename T>
static typename math::gsvd<T>::Type
gsvd_type (int nargout, int nargin)
{
  if (nargout == 0 || nargout == 1)
    return octave::math::gsvd<T>::Type::sigma_only;
  else if (nargin < 3)
    return octave::math::gsvd<T>::Type::std;
  else
    return octave::math::gsvd<T>::Type::economy;
}

// Named do_gsvd to avoid conflicts with the gsvd class itself.
template <typename T>
static octave_value_list
do_gsvd (const T& A, const T& B,
         const octave_idx_type nargout, const octave_idx_type nargin,
         bool is_single = false)
{
  math::gsvd<T> result (A, B, gsvd_type<T> (nargout, nargin));

  octave_value_list retval (nargout);
  if (nargout <= 1)
    {
      if (is_single)
        {
          FloatMatrix sigA = result.singular_values_A ();
          FloatMatrix sigB = result.singular_values_B ();
          for (int i = sigA.rows () - 1; i >= 0; i--)
            sigA.xelem (i) /= sigB.xelem (i);
          retval(0) = sigA.sort ();
        }
      else
        {
          Matrix sigA = result.singular_values_A ();
          Matrix sigB = result.singular_values_B ();
          for (int i = sigA.rows () - 1; i >= 0; i--)
            sigA.xelem (i) /= sigB.xelem (i);
          retval(0) = sigA.sort ();
        }
    }
  else
    {
      switch (nargout)
        {
        case 5:
          retval(4) = result.singular_values_B ();
          OCTAVE_FALLTHROUGH;

        case 4:
          retval(3) = result.singular_values_A ();
          OCTAVE_FALLTHROUGH;

        case 3:
          retval(2) = result.right_singular_matrix ();
        }

      retval(1) = result.left_singular_matrix_B ();
      retval(0) = result.left_singular_matrix_A ();
    }

  return retval;
}

DEFUN (gsvd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{S} =} gsvd (@var{A}, @var{B})
@deftypefnx {} {[@var{U}, @var{V}, @var{X}, @var{C}, @var{S}] =} gsvd (@var{A}, @var{B})
@deftypefnx {} {[@var{U}, @var{V}, @var{X}, @var{C}, @var{S}] =} gsvd (@var{A}, @var{B}, 0)
Compute the generalized singular value decomposition of (@var{A}, @var{B}).

The generalized singular value decomposition is defined by the following
relations:

@tex
$$ A = U C X^\dagger $$
$$ B = V S X^\dagger $$
$$ C^\dagger C + S^\dagger S = eye (columns (A)) $$
@end tex
@ifnottex

@example
@group
A = U*C*X'
B = V*S*X'
C'*C + S'*S = eye (columns (A))
@end group
@end example

@end ifnottex

The function @code{gsvd} normally returns just the vector of generalized
singular values
@tex
$$ \sqrt{{{diag (C^\dagger C)} \over {diag (S^\dagger S)}}} $$
@end tex
@ifnottex
@code{sqrt (diag (C'*C) ./ diag (S'*S))}.
@end ifnottex
If asked for five return values, it also computes
@tex
$U$, $V$, $X$, and $C$.
@end tex
@ifnottex
U, V, X, and C.
@end ifnottex

If the optional third input is present, @code{gsvd} constructs the
"economy-sized" decomposition where the number of columns of @var{U}, @var{V}
and the number of rows of @var{C}, @var{S} is less than or equal to the number
of columns of @var{A}.  This option is not yet implemented.

Programming Note: the code is a wrapper to the corresponding @sc{lapack} dggsvd
and zggsvd routines.  If matrices @var{A} and @var{B} are @emph{both} rank
deficient then @sc{lapack} will return an incorrect factorization.  Programmers
should avoid this combination.
@seealso{svd}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    print_usage ();
  else if (nargin == 3)
    {
      // FIXME: when "economy" is implemented delete this code
      warning ("gsvd: economy-sized decomposition is not yet implemented, returning full decomposition");
      nargin = 2;
    }

  octave_value_list retval;

  octave_value argA = args(0);
  octave_value argB = args(1);

  if (argA.columns () != argB.columns ())
    error ("gsvd: A and B must have the same number of columns");

  if (argA.is_single_type () || argB.is_single_type ())
    {
      if (argA.isreal () && argB.isreal ())
        {
          FloatMatrix tmpA = argA.xfloat_matrix_value ("gsvd: A must be a real or complex matrix");
          FloatMatrix tmpB = argB.xfloat_matrix_value ("gsvd: B must be a real or complex matrix");

          if (tmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (tmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (tmpA, tmpB, nargout, nargin, true);
        }
      else if (argA.iscomplex () || argB.iscomplex ())
        {
          FloatComplexMatrix ctmpA = argA.xfloat_complex_matrix_value ("gsvd: A must be a real or complex matrix");
          FloatComplexMatrix ctmpB = argB.xfloat_complex_matrix_value ("gsvd: B must be a real or complex matrix");

          if (ctmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (ctmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (ctmpA, ctmpB, nargout, nargin, true);
        }
      else
        error ("gsvd: A and B must be real or complex matrices");
    }
  else
    {
      if (argA.isreal () && argB.isreal ())
        {
          Matrix tmpA = argA.xmatrix_value ("gsvd: A must be a real or complex matrix");
          Matrix tmpB = argB.xmatrix_value ("gsvd: B must be a real or complex matrix");

          if (tmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (tmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (tmpA, tmpB, nargout, nargin);
        }
      else if (argA.iscomplex () || argB.iscomplex ())
        {
          ComplexMatrix ctmpA = argA.xcomplex_matrix_value ("gsvd: A must be a real or complex matrix");
          ComplexMatrix ctmpB = argB.xcomplex_matrix_value ("gsvd: B must be a real or complex matrix");

          if (ctmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (ctmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (ctmpA, ctmpB, nargout, nargin);
        }
      else
        error ("gsvd: A and B must be real or complex matrices");
    }

  return retval;
}

/*

## Basic tests of decomposition
%!test <60273>
%! A = reshape (1:15,5,3);
%! B = magic (3);
%! [U,V,X,C,S] = gsvd (A,B);
%! assert (size (U), [5, 5]);
%! assert (size (V), [3, 3]);
%! assert (size (X), [3, 3]);
%! assert (size (C), [5, 3]);
%! assert (C(4:5, :), zeros (2,3));
%! assert (size (S), [3, 3]);
%! assert (U*C*X', A, 50*eps);
%! assert (V*S*X', B, 50*eps);
%! S0 = gsvd (A, B);
%! assert (size (S0), [3, 1]);
%! S1 = sort (svd (A / B));
%! assert (S0, S1, 10*eps);

%!test <60273>
%! A = reshape (1:15,3,5);
%! B = magic (5);
%! [U,V,X,C,S] = gsvd (A,B);
%! assert (size (U), [3, 3]);
%! assert (size (V), [5, 5]);
%! assert (size (X), [5, 5]);
%! assert (size (C), [3, 5]);
%! assert (C(:, 4:5), zeros (3,2));
%! assert (size (S), [5, 5]);
%! assert (U*C*X', A, 120*eps);  # less accurate in this orientation
%! assert (V*S*X', B, 150*eps);  # for some reason.
%! S0 = gsvd (A, B);
%! assert (size (S0), [5, 1]);
%! S0 = S0(3:end);
%! S1 = sort (svd (A / B));
%! assert (S0, S1, 20*eps);

## a few tests for gsvd.m
%!shared A, A0, B, B0, U, V, C, S, X, old_state, restore_state
%! old_state = randn ("state");
%! restore_state = onCleanup (@() randn ("state", old_state));
%! randn ("state", 40); # initialize generator to make behavior reproducible
%! A0 = randn (5, 3);
%! B0 = diag ([1 2 4]);
%! A = A0;
%! B = B0;

## A (5x3) and B (3x3) are full rank
%!test <48807>
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A: 5x3 full rank, B: 3x3 rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A: 5x3 rank deficient, B: 3x3 full rank
%!test <48807>
%! B = B0;
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A and B are both rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A (now 3x5) and B (now 5x5) are full rank
%!test <48807>
%! A = A0.';
%! B0 = diag ([1 2 4 8 16]);
%! B = B0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 full rank, B: 5x5 rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 rank deficient, B: 5x5 full rank
%!test <48807>
%! B = B0;
%! A(3, :) = 2*A(1, :) - A(2, :);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 85*eps);

## A and B are both rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! A = A0.'; B = B0.';
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A: 5x3 complex full rank, B: 3x3 complex full rank
%!test <48807>
%! A0 = A0 + j*randn (5, 3);
%! B0 = diag ([1 2 4]) + j*diag ([4 -2 -1]);
%! A = A0;
%! B = B0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 25*eps);

## A: 5x3 complex full rank, B: 3x3 complex rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 25*eps);

## A: 5x3 complex rank deficient, B: 3x3 complex full rank
%!test <48807>
%! B = B0;
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 25*eps);

## A (5x3) and B (3x3) are both complex rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A (now 3x5) complex and B (now 5x5) complex are full rank
## now, A is 3x5
%!test <48807>
%! A = A0.';
%! B0 = diag ([1 2 4 8 16]) + j*diag ([-5 4 -3 2 -1]);
%! B = B0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 25*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 complex full rank, B: 5x5 complex rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 complex rank deficient, B: 5x5 complex full rank
%!test <48807>
%! B = B0;
%! A(3, :) = 2*A(1, :) - A(2, :);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 85*eps);

## A and B are both complex rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! A = A0.';
%! B = B0.';
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 85*eps);

## Test that single inputs produce single outputs
%!test
%! s = gsvd (single (eye (5)), B);
%! assert (class (s), "single");
%! [U,V,X,C,S] = gsvd (single (eye(5)), B);
%! assert (class (U), "single");
%! assert (class (V), "single");
%! assert (class (X), "single");
%! assert (class (C), "single");
%! assert (class (S), "single");
%!
%! s = gsvd (A, single (eye (5)));
%! assert (class (s), "single");
%! [U,V,X,C,S] = gsvd (A, single (eye (5)));
%! assert (class (U), "single");
%! assert (class (V), "single");
%! assert (class (X), "single");
%! assert (class (C), "single");
%! assert (class (S), "single");

## Test input validation
%!error <Invalid call> gsvd ()
%!error <Invalid call> gsvd (1)
%!error <Invalid call> gsvd (1,2,3,4)
%!warning <economy-sized decomposition is not yet implemented> gsvd (1,2,0);
%!error <A and B must have the same number of columns> gsvd (1,[1, 2])
## Test input validation for single (real and complex) inputs.
%!error <A cannot have Inf or NaN values> gsvd (Inf, single (2))
%!error <A cannot have Inf or NaN values> gsvd (NaN, single (2))
%!error <B cannot have Inf or NaN values> gsvd (single (1), Inf)
%!error <B cannot have Inf or NaN values> gsvd (single (1), NaN)
%!error <A must be a real or complex matrix> gsvd ({1}, single (2i))
%!error <B must be a real or complex matrix> gsvd (single (i), {2})
%!error <A cannot have Inf or NaN values> gsvd (Inf, single (2i))
%!error <A cannot have Inf or NaN values> gsvd (NaN, single (2i))
%!error <B cannot have Inf or NaN values> gsvd (single (i), Inf)
%!error <B cannot have Inf or NaN values> gsvd (single (i), NaN)
## Test input validation for single, but not real or complex, inputs.
%!error <A and B must be real or complex matrices> gsvd ({1}, single (2))
%!error <A and B must be real or complex matrices> gsvd (single (1), {2})
## Test input validation for double (real and complex) inputs.
%!error <A cannot have Inf or NaN values> gsvd (Inf, 2)
%!error <A cannot have Inf or NaN values> gsvd (NaN, 2)
%!error <B cannot have Inf or NaN values> gsvd (1, Inf)
%!error <B cannot have Inf or NaN values> gsvd (1, NaN)
%!error <A must be a real or complex matrix> gsvd ({1}, 2i)
%!error <B must be a real or complex matrix> gsvd (i, {2})
%!error <A cannot have Inf or NaN values> gsvd (Inf, 2i)
%!error <A cannot have Inf or NaN values> gsvd (NaN, 2i)
%!error <B cannot have Inf or NaN values> gsvd (i, Inf)
%!error <B cannot have Inf or NaN values> gsvd (i, NaN)
## Test input validation for double, but not real or complex, inputs.
%!error <A and B must be real or complex matrices> gsvd ({1}, double (2))
%!error <A and B must be real or complex matrices> gsvd (double (1), {2})
## Test input validation in liboctave/numeric/gsvd.cc
%!error <A and B cannot be empty matrices> gsvd (zeros (0,1), 1)
%!error <A and B cannot be empty matrices> gsvd (1, zeros (0,1))

*/

OCTAVE_NAMESPACE_END