view libinterp/corefcn/gsvd.cc @ 31605:e88a07dec498 stable

maint: Use macros to begin/end C++ namespaces. * oct-conf-post-public.in.h: Define two macros (OCTAVE_BEGIN_NAMESPACE, OCTAVE_END_NAMESPACE) that can be used to start/end a namespace. * mk-opts.pl, build-env.h, build-env.in.cc, __betainc__.cc, __contourc__.cc, __dsearchn__.cc, __eigs__.cc, __expint__.cc, __ftp__.cc, __gammainc__.cc, __ichol__.cc, __ilu__.cc, __isprimelarge__.cc, __lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, amd.cc, auto-shlib.cc, auto-shlib.h, balance.cc, base-text-renderer.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, ccolamd.cc, cellfun.cc, chol.cc, colamd.cc, colloc.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, data.h, debug.cc, defaults.cc, defaults.h, defun-int.h, defun.cc, det.cc, dirfns.cc, display.cc, display.h, dlmread.cc, dmperm.cc, dot.cc, dynamic-ld.cc, dynamic-ld.h, eig.cc, ellipj.cc, environment.cc, environment.h, error.cc, error.h, errwarn.h, event-manager.cc, event-manager.h, event-queue.cc, event-queue.h, fcn-info.cc, fcn-info.h, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics-toolkit.cc, graphics-toolkit.h, graphics.cc, graphics.in.h, gsvd.cc, gtk-manager.cc, gtk-manager.h, hash.cc, help.cc, help.h, hess.cc, hex2num.cc, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter-private.cc, interpreter-private.h, interpreter.cc, interpreter.h, inv.cc, jsondecode.cc, jsonencode.cc, kron.cc, latex-text-renderer.cc, latex-text-renderer.h, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-ascii-helper.cc, ls-ascii-helper.h, ls-oct-text.cc, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mex-private.h, mex.cc, mgorth.cc, nproc.cc, oct-fstrm.cc, oct-fstrm.h, oct-hdf5-types.cc, oct-hdf5-types.h, oct-hist.cc, oct-hist.h, oct-iostrm.cc, oct-iostrm.h, oct-opengl.h, oct-prcstrm.cc, oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-process.cc, oct-process.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct-tex-lexer.in.ll, oct-tex-parser.yy, ordqz.cc, ordschur.cc, pager.cc, pager.h, pinv.cc, pow2.cc, pr-flt-fmt.cc, pr-output.cc, procstream.cc, procstream.h, psi.cc, qr.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, settings.cc, settings.h, sighandlers.cc, sighandlers.h, sparse-xdiv.cc, sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, sparse.cc, spparms.cc, sqrtm.cc, stack-frame.cc, stack-frame.h, stream-euler.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symbfact.cc, syminfo.cc, syminfo.h, symrcm.cc, symrec.cc, symrec.h, symscope.cc, symscope.h, symtab.cc, symtab.h, syscalls.cc, sysdep.cc, sysdep.h, text-engine.cc, text-engine.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, url-handle-manager.cc, url-handle-manager.h, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, xdiv.cc, xdiv.h, xnorm.cc, xnorm.h, xpow.cc, xpow.h, __delaunayn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __ode15__.cc, __voronoi__.cc, audiodevinfo.cc, audioread.cc, convhulln.cc, fftw.cc, gzip.cc, mk-build-env-features.sh, mk-builtins.pl, cdef-class.cc, cdef-class.h, cdef-fwd.h, cdef-manager.cc, cdef-manager.h, cdef-method.cc, cdef-method.h, cdef-object.cc, cdef-object.h, cdef-package.cc, cdef-package.h, cdef-property.cc, cdef-property.h, cdef-utils.cc, cdef-utils.h, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-builtin.h, ov-cell.cc, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn.h, ov-java.cc, ov-java.h, ov-mex-fcn.h, ov-null-mat.cc, ov-oncleanup.cc, ov-struct.cc, ov-typeinfo.cc, ov-typeinfo.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, octave.cc, octave.h, mk-ops.sh, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-mi.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, anon-fcn-validator.cc, anon-fcn-validator.h, bp-table.cc, bp-table.h, comment-list.cc, comment-list.h, filepos.h, lex.h, lex.ll, oct-lvalue.cc, oct-lvalue.h, oct-parse.yy, parse.h, profiler.cc, profiler.h, pt-anon-scopes.cc, pt-anon-scopes.h, pt-arg-list.cc, pt-arg-list.h, pt-args-block.cc, pt-args-block.h, pt-array-list.cc, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-spmd.cc, pt-spmd.h, pt-stmt.cc, pt-stmt.h, pt-tm-const.cc, pt-tm-const.h, pt-unop.cc, pt-unop.h, pt-vm-eval.cc, pt-walk.cc, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Range.cc, Range.h, idx-vector.cc, idx-vector.h, range-fwd.h, CollocWt.cc, CollocWt.h, aepbalance.cc, aepbalance.h, chol.cc, chol.h, gepbalance.cc, gepbalance.h, gsvd.cc, gsvd.h, hess.cc, hess.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, lu.cc, lu.h, oct-convn.cc, oct-convn.h, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-norm.h, oct-rand.cc, oct-rand.h, oct-spparms.cc, oct-spparms.h, qr.cc, qr.h, qrp.cc, qrp.h, randgamma.cc, randgamma.h, randmtzig.cc, randmtzig.h, randpoisson.cc, randpoisson.h, schur.cc, schur.h, sparse-chol.cc, sparse-chol.h, sparse-lu.cc, sparse-lu.h, sparse-qr.cc, sparse-qr.h, svd.cc, svd.h, child-list.cc, child-list.h, dir-ops.cc, dir-ops.h, file-ops.cc, file-ops.h, file-stat.cc, file-stat.h, lo-sysdep.cc, lo-sysdep.h, lo-sysinfo.cc, lo-sysinfo.h, mach-info.cc, mach-info.h, oct-env.cc, oct-env.h, oct-group.cc, oct-group.h, oct-password.cc, oct-password.h, oct-syscalls.cc, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.cc, oct-uname.h, action-container.cc, action-container.h, base-list.h, cmd-edit.cc, cmd-edit.h, cmd-hist.cc, cmd-hist.h, f77-fcn.h, file-info.cc, file-info.h, lo-array-errwarn.cc, lo-array-errwarn.h, lo-hash.cc, lo-hash.h, lo-ieee.h, lo-regexp.cc, lo-regexp.h, lo-utils.cc, lo-utils.h, oct-base64.cc, oct-base64.h, oct-glob.cc, oct-glob.h, oct-inttypes.h, oct-mutex.cc, oct-mutex.h, oct-refcount.h, oct-shlib.cc, oct-shlib.h, oct-sparse.cc, oct-sparse.h, oct-string.h, octave-preserve-stream-state.h, pathsearch.cc, pathsearch.h, quit.cc, quit.h, unwind-prot.cc, unwind-prot.h, url-transfer.cc, url-transfer.h : Use new macros to begin/end C++ namespaces.
author Rik <rik@octave.org>
date Thu, 01 Dec 2022 14:23:45 -0800
parents 796f54d4ddbf
children aac27ad79be6
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1997-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include "dMatrix.h"
#include "CMatrix.h"
#include "dDiagMatrix.h"
#include "gsvd.h"

#include "defun.h"
#include "defun-int.h"
#include "error.h"
#include "errwarn.h"
#include "utils.h"
#include "ovl.h"
#include "ov.h"

OCTAVE_BEGIN_NAMESPACE(octave)

template <typename T>
static typename math::gsvd<T>::Type
gsvd_type (int nargout, int nargin)
{
  if (nargout == 0 || nargout == 1)
    return octave::math::gsvd<T>::Type::sigma_only;
  else if (nargin < 3)
    return octave::math::gsvd<T>::Type::std;
  else
    return octave::math::gsvd<T>::Type::economy;
}

// Named do_gsvd to avoid conflicts with the gsvd class itself.
template <typename T>
static octave_value_list
do_gsvd (const T& A, const T& B,
         const octave_idx_type nargout, const octave_idx_type nargin,
         bool is_single = false)
{
  math::gsvd<T> result (A, B, gsvd_type<T> (nargout, nargin));

  octave_value_list retval (nargout);
  if (nargout <= 1)
    {
      if (is_single)
        {
          FloatMatrix sigA = result.singular_values_A ();
          FloatMatrix sigB = result.singular_values_B ();
          for (int i = sigA.rows () - 1; i >= 0; i--)
            sigA.xelem (i) /= sigB.xelem (i);
          retval(0) = sigA.sort ();
        }
      else
        {
          Matrix sigA = result.singular_values_A ();
          Matrix sigB = result.singular_values_B ();
          for (int i = sigA.rows () - 1; i >= 0; i--)
            sigA.xelem (i) /= sigB.xelem (i);
          retval(0) = sigA.sort ();
        }
    }
  else
    {
      switch (nargout)
        {
        case 5:
          retval(4) = result.singular_values_B ();
          OCTAVE_FALLTHROUGH;

        case 4:
          retval(3) = result.singular_values_A ();
          OCTAVE_FALLTHROUGH;

        case 3:
          retval(2) = result.right_singular_matrix ();
        }

      retval(1) = result.left_singular_matrix_B ();
      retval(0) = result.left_singular_matrix_A ();
    }

  return retval;
}

DEFUN (gsvd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{S} =} gsvd (@var{A}, @var{B})
@deftypefnx {} {[@var{U}, @var{V}, @var{X}, @var{C}, @var{S}] =} gsvd (@var{A}, @var{B})
@deftypefnx {} {[@var{U}, @var{V}, @var{X}, @var{C}, @var{S}] =} gsvd (@var{A}, @var{B}, 0)
Compute the generalized singular value decomposition of (@var{A}, @var{B}).

The generalized singular value decomposition is defined by the following
relations:

@tex
$$ A = U C X^\dagger $$
$$ B = V S X^\dagger $$
$$ C^\dagger C + S^\dagger S = eye (columns (A)) $$
@end tex
@ifnottex

@example
@group
A = U*C*X'
B = V*S*X'
C'*C + S'*S = eye (columns (A))
@end group
@end example

@end ifnottex

The function @code{gsvd} normally returns just the vector of generalized
singular values
@tex
$$ \sqrt{{{diag (C^\dagger C)} \over {diag (S^\dagger S)}}} $$
@end tex
@ifnottex
@code{sqrt (diag (C'*C) ./ diag (S'*S))}.
@end ifnottex
If asked for five return values, it also computes
@tex
$U$, $V$, $X$, and $C$.
@end tex
@ifnottex
U, V, X, and C.
@end ifnottex

If the optional third input is present, @code{gsvd} constructs the
"economy-sized" decomposition where the number of columns of @var{U}, @var{V}
and the number of rows of @var{C}, @var{S} is less than or equal to the number
of columns of @var{A}.  This option is not yet implemented.

Programming Note: the code is a wrapper to the corresponding @sc{lapack} dggsvd
and zggsvd routines.  If matrices @var{A} and @var{B} are @emph{both} rank
deficient then @sc{lapack} will return an incorrect factorization.  Programmers
should avoid this combination.
@seealso{svd}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    print_usage ();
  else if (nargin == 3)
    {
      // FIXME: when "economy" is implemented delete this code
      warning ("gsvd: economy-sized decomposition is not yet implemented, returning full decomposition");
      nargin = 2;
    }

  octave_value_list retval;

  octave_value argA = args(0);
  octave_value argB = args(1);

  if (argA.columns () != argB.columns ())
    error ("gsvd: A and B must have the same number of columns");

  if (argA.is_single_type () || argB.is_single_type ())
    {
      if (argA.isreal () && argB.isreal ())
        {
          FloatMatrix tmpA = argA.xfloat_matrix_value ("gsvd: A must be a real or complex matrix");
          FloatMatrix tmpB = argB.xfloat_matrix_value ("gsvd: B must be a real or complex matrix");

          if (tmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (tmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (tmpA, tmpB, nargout, nargin, true);
        }
      else if (argA.iscomplex () || argB.iscomplex ())
        {
          FloatComplexMatrix ctmpA = argA.xfloat_complex_matrix_value ("gsvd: A must be a real or complex matrix");
          FloatComplexMatrix ctmpB = argB.xfloat_complex_matrix_value ("gsvd: B must be a real or complex matrix");

          if (ctmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (ctmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (ctmpA, ctmpB, nargout, nargin, true);
        }
      else
        error ("gsvd: A and B must be real or complex matrices");
    }
  else
    {
      if (argA.isreal () && argB.isreal ())
        {
          Matrix tmpA = argA.xmatrix_value ("gsvd: A must be a real or complex matrix");
          Matrix tmpB = argB.xmatrix_value ("gsvd: B must be a real or complex matrix");

          if (tmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (tmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (tmpA, tmpB, nargout, nargin);
        }
      else if (argA.iscomplex () || argB.iscomplex ())
        {
          ComplexMatrix ctmpA = argA.xcomplex_matrix_value ("gsvd: A must be a real or complex matrix");
          ComplexMatrix ctmpB = argB.xcomplex_matrix_value ("gsvd: B must be a real or complex matrix");

          if (ctmpA.any_element_is_inf_or_nan ())
            error ("gsvd: A cannot have Inf or NaN values");
          if (ctmpB.any_element_is_inf_or_nan ())
            error ("gsvd: B cannot have Inf or NaN values");

          retval = do_gsvd (ctmpA, ctmpB, nargout, nargin);
        }
      else
        error ("gsvd: A and B must be real or complex matrices");
    }

  return retval;
}

/*

## Basic tests of decomposition
%!test <60273>
%! A = reshape (1:15,5,3);
%! B = magic (3);
%! [U,V,X,C,S] = gsvd (A,B);
%! assert (size (U), [5, 5]);
%! assert (size (V), [3, 3]);
%! assert (size (X), [3, 3]);
%! assert (size (C), [5, 3]);
%! assert (C(4:5, :), zeros (2,3));
%! assert (size (S), [3, 3]);
%! assert (U*C*X', A, 50*eps);
%! assert (V*S*X', B, 50*eps);
%! S0 = gsvd (A, B);
%! assert (size (S0), [3, 1]);
%! S1 = sort (svd (A / B));
%! assert (S0, S1, 10*eps);

%!test <60273>
%! A = reshape (1:15,3,5);
%! B = magic (5);
%! [U,V,X,C,S] = gsvd (A,B);
%! assert (size (U), [3, 3]);
%! assert (size (V), [5, 5]);
%! assert (size (X), [5, 5]);
%! assert (size (C), [3, 5]);
%! assert (C(:, 4:5), zeros (3,2));
%! assert (size (S), [5, 5]);
%! assert (U*C*X', A, 120*eps);  # less accurate in this orientation
%! assert (V*S*X', B, 150*eps);  # for some reason.
%! S0 = gsvd (A, B);
%! assert (size (S0), [5, 1]);
%! S0 = S0(3:end);
%! S1 = sort (svd (A / B));
%! assert (S0, S1, 20*eps);

## a few tests for gsvd.m
%!shared A, A0, B, B0, U, V, C, S, X, old_state, restore_state
%! old_state = randn ("state");
%! restore_state = onCleanup (@() randn ("state", old_state));
%! randn ("state", 40); # initialize generator to make behavior reproducible
%! A0 = randn (5, 3);
%! B0 = diag ([1 2 4]);
%! A = A0;
%! B = B0;

## A (5x3) and B (3x3) are full rank
%!test <48807>
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A: 5x3 full rank, B: 3x3 rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A: 5x3 rank deficient, B: 3x3 full rank
%!test <48807>
%! B = B0;
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A and B are both rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A (now 3x5) and B (now 5x5) are full rank
%!test <48807>
%! A = A0.';
%! B0 = diag ([1 2 4 8 16]);
%! B = B0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 full rank, B: 5x5 rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 rank deficient, B: 5x5 full rank
%!test <48807>
%! B = B0;
%! A(3, :) = 2*A(1, :) - A(2, :);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 85*eps);

## A and B are both rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! A = A0.'; B = B0.';
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A: 5x3 complex full rank, B: 3x3 complex full rank
%!test <48807>
%! A0 = A0 + j*randn (5, 3);
%! B0 = diag ([1 2 4]) + j*diag ([4 -2 -1]);
%! A = A0;
%! B = B0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 25*eps);

## A: 5x3 complex full rank, B: 3x3 complex rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 25*eps);

## A: 5x3 complex rank deficient, B: 3x3 complex full rank
%!test <48807>
%! B = B0;
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 15*eps);
%! assert (V*S*X', B, 25*eps);

## A (5x3) and B (3x3) are both complex rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (3), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 20*eps);

## A (now 3x5) complex and B (now 5x5) complex are full rank
## now, A is 3x5
%!test <48807>
%! A = A0.';
%! B0 = diag ([1 2 4 8 16]) + j*diag ([-5 4 -3 2 -1]);
%! B = B0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 25*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 complex full rank, B: 5x5 complex rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 85*eps);

## A: 3x5 complex rank deficient, B: 5x5 complex full rank
%!test <48807>
%! B = B0;
%! A(3, :) = 2*A(1, :) - A(2, :);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 85*eps);

## A and B are both complex rank deficient
## FIXME: LAPACK seems to be completely broken for this case
%!#test <48807>
%! A = A0.';
%! B = B0.';
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S] = gsvd (A, B);
%! assert (C'*C + S'*S, eye (5), 5*eps);
%! assert (U*C*X', A, 10*eps);
%! assert (V*S*X', B, 85*eps);

## Test that single inputs produce single outputs
%!test
%! s = gsvd (single (eye (5)), B);
%! assert (class (s), "single");
%! [U,V,X,C,S] = gsvd (single (eye(5)), B);
%! assert (class (U), "single");
%! assert (class (V), "single");
%! assert (class (X), "single");
%! assert (class (C), "single");
%! assert (class (S), "single");
%!
%! s = gsvd (A, single (eye (5)));
%! assert (class (s), "single");
%! [U,V,X,C,S] = gsvd (A, single (eye (5)));
%! assert (class (U), "single");
%! assert (class (V), "single");
%! assert (class (X), "single");
%! assert (class (C), "single");
%! assert (class (S), "single");

## Test input validation
%!error <Invalid call> gsvd ()
%!error <Invalid call> gsvd (1)
%!error <Invalid call> gsvd (1,2,3,4)
%!warning <economy-sized decomposition is not yet implemented> gsvd (1,2,0);
%!error <A and B must have the same number of columns> gsvd (1,[1, 2])
## Test input validation for single (real and complex) inputs.
%!error <A cannot have Inf or NaN values> gsvd (Inf, single (2))
%!error <A cannot have Inf or NaN values> gsvd (NaN, single (2))
%!error <B cannot have Inf or NaN values> gsvd (single (1), Inf)
%!error <B cannot have Inf or NaN values> gsvd (single (1), NaN)
%!error <A must be a real or complex matrix> gsvd ({1}, single (2i))
%!error <B must be a real or complex matrix> gsvd (single (i), {2})
%!error <A cannot have Inf or NaN values> gsvd (Inf, single (2i))
%!error <A cannot have Inf or NaN values> gsvd (NaN, single (2i))
%!error <B cannot have Inf or NaN values> gsvd (single (i), Inf)
%!error <B cannot have Inf or NaN values> gsvd (single (i), NaN)
## Test input validation for single, but not real or complex, inputs.
%!error <A and B must be real or complex matrices> gsvd ({1}, single (2))
%!error <A and B must be real or complex matrices> gsvd (single (1), {2})
## Test input validation for double (real and complex) inputs.
%!error <A cannot have Inf or NaN values> gsvd (Inf, 2)
%!error <A cannot have Inf or NaN values> gsvd (NaN, 2)
%!error <B cannot have Inf or NaN values> gsvd (1, Inf)
%!error <B cannot have Inf or NaN values> gsvd (1, NaN)
%!error <A must be a real or complex matrix> gsvd ({1}, 2i)
%!error <B must be a real or complex matrix> gsvd (i, {2})
%!error <A cannot have Inf or NaN values> gsvd (Inf, 2i)
%!error <A cannot have Inf or NaN values> gsvd (NaN, 2i)
%!error <B cannot have Inf or NaN values> gsvd (i, Inf)
%!error <B cannot have Inf or NaN values> gsvd (i, NaN)
## Test input validation for double, but not real or complex, inputs.
%!error <A and B must be real or complex matrices> gsvd ({1}, double (2))
%!error <A and B must be real or complex matrices> gsvd (double (1), {2})
## Test input validation in liboctave/numeric/gsvd.cc
%!error <A and B cannot be empty matrices> gsvd (zeros (0,1), 1)
%!error <A and B cannot be empty matrices> gsvd (1, zeros (0,1))

*/

OCTAVE_END_NAMESPACE(octave)