view scripts/linear-algebra/ishermitian.m @ 33577:2506c2d30b32 bytecode-interpreter tip

maint: Merge default to bytecode-interpreter
author Arun Giridhar <arungiridhar@gmail.com>
date Sat, 11 May 2024 18:49:01 -0400
parents 0b8f3470d1fb
children
line wrap: on
line source

########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{tf} =} ishermitian (@var{A})
## @deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @var{tol})
## @deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @qcode{"skew"})
## @deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @qcode{"skew"}, @var{tol})
## Return true if @var{A} is a Hermitian or skew-Hermitian numeric matrix
## within the tolerance specified by @var{tol}.
##
## The default tolerance is zero (uses faster code).
##
## The type of symmetry to check may be specified with the additional input
## @qcode{"nonskew"} (default) for regular Hermitian or @qcode{"skew"} for
## skew-Hermitian.
##
## Background: A matrix is Hermitian if the complex conjugate transpose of the
## matrix is equal to the original matrix: @w{@tcode{@var{A} == @var{A}'}}.  If
## a tolerance is given then the calculation is
## @code{norm (@var{A} - @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
##
## A matrix is skew-Hermitian if the complex conjugate transpose of the matrix
## is equal to the negative of the original matrix:
## @w{@tcode{@var{A} == -@var{A}'}}.  If a
## tolerance is given then the calculation is
## @code{norm (@var{A} + @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
## @seealso{issymmetric, isdefinite}
## @end deftypefn

function tf = ishermitian (A, skewopt = "nonskew", tol = 0)

  if (nargin < 1)
    print_usage ();
  endif

  if (nargin == 2)
    ## Decode whether second argument is skewopt or tol
    if (isnumeric (skewopt))
      tol = skewopt;
      skewopt = "nonskew";
    elseif (! ischar (skewopt))
      error ("ishermitian: second argument must be a non-negative scalar TOL, or one of the strings: 'skew' / 'nonskew'");
    endif
  endif

  ## Validate inputs
  tf = (isnumeric (A) || islogical (A)) && issquare (A);
  if (! tf)
    return;
  endif

  if (! (strcmp (skewopt, "skew") || strcmp (skewopt, "nonskew")))
    error ("ishermitian: SKEWOPT must be 'skew' or 'nonskew'");
  endif

  if (! (isnumeric (tol) && isscalar (tol) && tol >= 0))
    error ("ishermitian: TOL must be a scalar >= 0");
  endif

  ## Calculate Hermitian-ness
  if (strcmp (skewopt, "nonskew"))
    if (tol == 0)
      ## check for exact symmetry
      tf = full (! any ((A != A')(:)));
    else
      if (islogical (A))
        ## Hack to allow norm to work.  Choose single to minimize memory.
        A = single (A);
      endif
      norm_x = norm (A, Inf);
      tf = norm_x == 0 || norm (A - A', Inf) / norm_x <= tol;
    endif
  else
    ## skew-Hermitian
    if (tol == 0)
      tf = full (! any ((A != -A')(:)));
    else
      if (islogical (A))
        ## Hack to allow norm to work.  Choose single to minimize memory.
        A = single (A);
      endif
      norm_x = norm (A, Inf);
      tf = norm_x == 0 || norm (A + A', Inf) / norm_x <= tol;
    endif
  endif

endfunction


%!assert (ishermitian (1))
%!assert (! ishermitian ([1, 2]))
%!assert (ishermitian ([]))
%!assert (ishermitian ([1, 2; 2, 1]))
%!assert (ishermitian ([1, 2.1; 2, 1.1], 0.2))
%!assert (ishermitian ([1, -2i; 2i, 1]))
%!assert (ishermitian (speye (100)), true)  # Return full logical value.
%!assert (ishermitian (logical (eye (2))))
%!assert (! ishermitian (logical ([1 1; 0 1])))
%!assert (ishermitian (logical ([1 1; 0 1]), 0.5))
%!assert (ishermitian ([0, 2i; 2i, 0], "skew"))
%!assert (! ishermitian ([0, 2; -2, eps], "skew"))
%!assert (ishermitian ([0, 2; -2, eps], "skew", eps))

%!assert (! (ishermitian ("test")))
%!assert (! (ishermitian ("t")))
%!assert (! (ishermitian (["te"; "et"])))
%!assert (! ishermitian ({1}))
%!test
%! s.a = 1;
%! assert (! ishermitian (s));

## Test input validation
%!error <Invalid call> ishermitian ()
%!error <second argument must be> ishermitian (1, {"skew"})
%!error <SKEWOPT must be 'skew' or 'nonskew'> ishermitian (1, "foobar")
%!error <SKEWOPT must be 'skew' or 'nonskew'> ishermitian (1, "foobar")
%!error <TOL must be a scalar .= 0> ishermitian (1, "skew", {1})
%!error <TOL must be a scalar .= 0> ishermitian (1, "skew", [1 1])
%!error <TOL must be a scalar .= 0> ishermitian (1, -1)