changeset 1299:484e94579182

[project @ 1995-05-01 18:50:20 by jwe]
author jwe
date Mon, 01 May 1995 18:53:09 +0000
parents c6f21b933f95
children 4d86fe3f634e
files src/Makefile.in src/pt-const.cc
diffstat 2 files changed, 6217 insertions(+), 23 deletions(-) [+]
line wrap: on
line diff
--- a/src/Makefile.in	Mon May 01 18:44:09 1995 +0000
+++ b/src/Makefile.in	Mon May 01 18:53:09 1995 +0000
@@ -82,11 +82,10 @@
 	octave-hist.cc oct-map.cc oct-obj.cc pager.cc parse.y \
 	pr-output.cc procstream.cc resource.cc sighandlers.cc \
 	strcasecmp.c strncase.c strfns.cc strftime.c symtab.cc \
-	sysdep.cc tc-rep.cc tc-rep-ass.cc tc-rep-idx.cc tempname.c \
-	timefns.cc tempnam.c token.cc tree-base.cc tree-cmd.cc \
-	tree-const.cc tree-expr.cc tree-misc.cc tree-plot.cc \
-	unwind-prot.cc user-prefs.cc utils.cc variables.cc xdiv.cc \
-	xpow.cc Map.cc SLStack.cc
+	sysdep.cc tempname.c timefns.cc tempnam.c token.cc \
+	tree-base.cc tree-cmd.cc tree-const.cc tree-expr.cc \
+	tree-misc.cc tree-plot.cc unwind-prot.cc user-prefs.cc \
+	utils.cc variables.cc xdiv.cc xpow.cc Map.cc SLStack.cc
 
 TEMPLATE_SRC = Map.cc SLStack.cc
 
@@ -115,7 +114,7 @@
 # nothing.
 
 OCTAVE_LIBS = @LIBOCTDLD@ ../liboctave/liboctave.a libtinst.a \
-	../libcruft/libcruft.a @LIBINFO@ @LIBREADLINE@ \
+	../libcruft/libcruft.a @LIBREADLINE@ \
 	../kpathsea/kpathsea.a @LIBDLD@
 
 DISTFILES = Makefile.in mkdefs mkbuiltins \
--- a/src/pt-const.cc	Mon May 01 18:44:09 1995 +0000
+++ b/src/pt-const.cc	Mon May 01 18:53:09 1995 +0000
@@ -21,6 +21,10 @@
 
 */
 
+#if defined (__GNUG__)
+#pragma implementation
+#endif
+
 #ifdef HAVE_CONFIG_H
 #include <config.h>
 #endif
@@ -40,10 +44,10 @@
 // tree_constant class.
 
 // Pointer to the blocks of memory we manage.
-static tree_constant *newlist = 0;
+static tree_constant *tc_newlist = 0;
 
 // Multiplier for allocating new blocks.
-static const int newlist_grow_size = 128;
+static const int tc_newlist_grow_size = 128;
 
 Octave_map
 tree_constant::map_value (void) const
@@ -70,19 +74,19 @@
 {
   assert (size == sizeof (tree_constant));
 
-  if (! newlist)
-    {
-      int block_size = newlist_grow_size * sizeof (tree_constant);
-      newlist = (tree_constant *) new char [block_size];
-
-      for (int i = 0; i < newlist_grow_size - 1; i++)
-	newlist[i].freeptr = &newlist[i+1];
-
-      newlist[i].freeptr = 0;
-    }
-
-  tree_constant *tmp = newlist;
-  newlist = newlist->freeptr;
+  if (! tc_newlist)
+    {
+      int block_size = tc_newlist_grow_size * sizeof (tree_constant);
+      tc_newlist = (tree_constant *) new char [block_size];
+
+      for (int i = 0; i < tc_newlist_grow_size - 1; i++)
+	tc_newlist[i].freeptr = &tc_newlist[i+1];
+
+      tc_newlist[i].freeptr = 0;
+    }
+
+  tree_constant *tmp = tc_newlist;
+  tc_newlist = tc_newlist->freeptr;
   return tmp;
 }
 
@@ -90,8 +94,8 @@
 tree_constant::operator delete (void *p, size_t size)
 {
   tree_constant *tmp = (tree_constant *) p;
-  tmp->freeptr = newlist;
-  newlist = tmp;
+  tmp->freeptr = tc_newlist;
+  tc_newlist = tmp;
 }
 
 // Simple assignment.
@@ -344,6 +348,6197 @@
   return retval;
 }
 
+// -------------------------------------------------------------------
+//
+// Basic stuff for the tree-constant representation class.
+//
+// Leave the commented #includes below to make it easy to split this
+// out again, should we want to do that.
+//
+// -------------------------------------------------------------------
+
+// #ifdef HAVE_CONFIG_H
+// #include <config.h>
+// #endif
+
+#include <ctype.h>
+// #include <string.h>
+#include <fstream.h>
+// #include <iostream.h>
+
+#include "mx-base.h"
+#include "Range.h"
+
+#include "arith-ops.h"
+#include "variables.h"
+#include "sysdep.h"
+// #include "error.h"
+// #include "gripes.h"
+// #include "user-prefs.h"
+#include "utils.h"
+#include "pr-output.h"
+// #include "tree-const.h"
+#include "idx-vector.h"
+#include "unwind-prot.h"
+// #include "oct-map.h"
+
+#include "tc-inlines.h"
+
+// The following three variables could be made static members of the
+// TC_REP class.
+
+// Pointer to the blocks of memory we manage.
+static TC_REP *tc_rep_newlist = 0;
+
+// Multiplier for allocating new blocks.
+static const int tc_rep_newlist_grow_size = 128;
+
+// Indentation level for structures.
+static int structure_indent_level = 0;
+
+static void
+increment_structure_indent_level (void)
+{
+  structure_indent_level += 2;
+}
+
+static void
+decrement_structure_indent_level (void)
+{
+  structure_indent_level -= 2;
+}
+
+static int
+any_element_is_complex (const ComplexMatrix& a)
+{
+  int nr = a.rows ();
+  int nc = a.columns ();
+  for (int j = 0; j < nc; j++)
+    for (int i = 0; i < nr; i++)
+      if (imag (a.elem (i, j)) != 0.0)
+	return 1;
+  return 0;
+}
+
+// The real representation of constants.
+
+TC_REP::tree_constant_rep (void)
+{
+  type_tag = unknown_constant;
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (double d)
+{
+  scalar = d;
+  type_tag = scalar_constant;
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const Matrix& m)
+{
+  if (m.rows () == 1 && m.columns () == 1)
+    {
+      scalar = m.elem (0, 0);
+      type_tag = scalar_constant;
+    }
+  else
+    {
+      matrix = new Matrix (m);
+      type_tag = matrix_constant;
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const DiagMatrix& d)
+{
+  if (d.rows () == 1 && d.columns () == 1)
+    {
+      scalar = d.elem (0, 0);
+      type_tag = scalar_constant;
+    }
+  else
+    {
+      matrix = new Matrix (d);
+      type_tag = matrix_constant;
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const RowVector& v, int prefer_column_vector)
+{
+  int len = v.capacity ();
+  if (len == 1)
+    {
+      scalar = v.elem (0);
+      type_tag = scalar_constant;
+    }
+  else
+    {
+      int pcv = (prefer_column_vector < 0)
+	? user_pref.prefer_column_vectors
+	  : prefer_column_vector;
+
+      if (pcv)
+	{
+	  Matrix m (len, 1);
+	  for (int i = 0; i < len; i++)
+	    m.elem (i, 0) = v.elem (i);
+	  matrix = new Matrix (m);
+	  type_tag = matrix_constant;
+	}
+      else
+	{
+	  Matrix m (1, len);
+	  for (int i = 0; i < len; i++)
+	    m.elem (0, i) = v.elem (i);
+	  matrix = new Matrix (m);
+	  type_tag = matrix_constant;
+	}
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const ColumnVector& v, int prefer_column_vector)
+{
+  int len = v.capacity ();
+  if (len == 1)
+    {
+      scalar = v.elem (0);
+      type_tag = scalar_constant;
+    }
+  else
+    {
+      int pcv = (prefer_column_vector < 0)
+	? user_pref.prefer_column_vectors
+	  : prefer_column_vector;
+
+      if (pcv)
+	{
+	  Matrix m (len, 1);
+	  for (int i = 0; i < len; i++)
+	    m.elem (i, 0) = v.elem (i);
+	  matrix = new Matrix (m);
+	  type_tag = matrix_constant;
+	}
+      else
+	{
+	  Matrix m (1, len);
+	  for (int i = 0; i < len; i++)
+	    m.elem (0, i) = v.elem (i);
+	  matrix = new Matrix (m);
+	  type_tag = matrix_constant;
+	}
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const Complex& c)
+{
+  complex_scalar = new Complex (c);
+  type_tag = complex_scalar_constant;
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const ComplexMatrix& m)
+{
+  if (m.rows () == 1 && m.columns () == 1)
+    {
+      complex_scalar = new Complex (m.elem (0, 0));
+      type_tag = complex_scalar_constant;
+    }
+  else
+    {
+      complex_matrix = new ComplexMatrix (m);
+      type_tag = complex_matrix_constant;
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const ComplexDiagMatrix& d)
+{
+  if (d.rows () == 1 && d.columns () == 1)
+    {
+      complex_scalar = new Complex (d.elem (0, 0));
+      type_tag = complex_scalar_constant;
+    }
+  else
+    {
+      complex_matrix = new ComplexMatrix (d);
+      type_tag = complex_matrix_constant;
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const ComplexRowVector& v,
+			   int prefer_column_vector) 
+{
+  int len = v.capacity ();
+  if (len == 1)
+    {
+      complex_scalar = new Complex (v.elem (0));
+      type_tag = complex_scalar_constant;
+    }
+  else
+    {
+      int pcv = (prefer_column_vector < 0)
+	? user_pref.prefer_column_vectors
+	  : prefer_column_vector;
+
+      if (pcv)
+	{
+	  ComplexMatrix m (len, 1);
+	  for (int i = 0; i < len; i++)
+	    m.elem (i, 0) = v.elem (i);
+	  complex_matrix = new ComplexMatrix (m);
+	  type_tag = complex_matrix_constant;
+	}
+      else
+	{
+	  ComplexMatrix m (1, len);
+	  for (int i = 0; i < len; i++)
+	    m.elem (0, i) = v.elem (i);
+	  complex_matrix = new ComplexMatrix (m);
+	  type_tag = complex_matrix_constant;
+	}
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const ComplexColumnVector& v, int
+			   prefer_column_vector)
+{
+  int len = v.capacity ();
+  if (len == 1)
+    {
+      complex_scalar = new Complex (v.elem (0));
+      type_tag = complex_scalar_constant;
+    }
+  else
+    {
+      int pcv = (prefer_column_vector < 0)
+	? user_pref.prefer_column_vectors
+	  : prefer_column_vector;
+
+      if (pcv)
+	{
+	  ComplexMatrix m (len, 1);
+	  for (int i = 0; i < len; i++)
+	    m.elem (i, 0) = v.elem (i);
+	  complex_matrix = new ComplexMatrix (m);
+	  type_tag = complex_matrix_constant;
+	}
+      else
+	{
+	  ComplexMatrix m (1, len);
+	  for (int i = 0; i < len; i++)
+	    m.elem (0, i) = v.elem (i);
+	  complex_matrix = new ComplexMatrix (m);
+	  type_tag = complex_matrix_constant;
+	}
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const char *s)
+{
+  string = strsave (s);
+  type_tag = string_constant;
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (double b, double l, double i)
+{
+  range = new Range (b, l, i);
+  int nel = range->nelem ();
+  if (nel > 1)
+    type_tag = range_constant;
+  else
+    {
+      delete range;
+      if (nel == 1)
+	{
+	  scalar = b;
+	  type_tag = scalar_constant;
+	}
+      else if (nel == 0)
+	{
+	  matrix = new Matrix ();
+	  type_tag = matrix_constant;
+	}
+      else
+	{
+	  type_tag = unknown_constant;
+	  if (nel == -1)
+	    ::error ("number of elements in range exceeds INT_MAX");
+	  else
+	    ::error ("invalid range");
+	}
+    }
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const Range& r)
+{
+  int nel = r.nelem ();
+  if (nel > 1)
+    {
+      range = new Range (r);
+      type_tag = range_constant;
+    }
+  else if (nel == 1)
+    {
+      scalar = r.base ();
+      type_tag = scalar_constant;
+    }
+  else if (nel == 0)
+    {
+      matrix = new Matrix ();
+      type_tag = matrix_constant;
+    }
+  else
+    {
+      type_tag = unknown_constant;
+      if (nel == -1)
+	::error ("number of elements in range exceeds INT_MAX");
+      else
+	::error ("invalid range");
+    }
+
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const Octave_map& m)
+{
+  a_map = new Octave_map (m);
+  type_tag = map_constant;
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (TC_REP::constant_type t)
+{
+  assert (t == magic_colon || t == all_va_args);
+  type_tag = t;
+  orig_text = 0;
+}
+
+TC_REP::tree_constant_rep (const tree_constant_rep& t)
+{
+  type_tag = t.type_tag;
+
+  switch (t.type_tag)
+    {
+    case unknown_constant:
+      break;
+
+    case scalar_constant:
+      scalar = t.scalar;
+      break;
+
+    case matrix_constant:
+      matrix = new Matrix (*(t.matrix));
+      break;
+
+    case string_constant:
+      string = strsave (t.string);
+      break;
+
+    case complex_matrix_constant:
+      complex_matrix = new ComplexMatrix (*(t.complex_matrix));
+      break;
+
+    case complex_scalar_constant:
+      complex_scalar = new Complex (*(t.complex_scalar));
+      break;
+
+    case range_constant:
+      range = new Range (*(t.range));
+      break;
+
+    case map_constant:
+      a_map = new Octave_map (*(t.a_map));
+      break;
+
+    case magic_colon:
+    case all_va_args:
+      break;
+    }
+
+  orig_text = strsave (t.orig_text);
+}
+
+TC_REP::~tree_constant_rep (void)
+{
+  switch (type_tag)
+    {
+    case matrix_constant:
+      delete matrix;
+      break;
+
+    case complex_scalar_constant:
+      delete complex_scalar;
+      break;
+
+    case complex_matrix_constant:
+      delete complex_matrix;
+      break;
+
+    case string_constant:
+      delete [] string;
+      break;
+
+    case range_constant:
+      delete range;
+      break;
+
+    case map_constant:
+      delete a_map;
+      break;
+
+    case unknown_constant:
+    case scalar_constant:
+    case magic_colon:
+    case all_va_args:
+      break;
+    }
+
+  delete [] orig_text;
+}
+
+void *
+TC_REP::operator new (size_t size)
+{
+  assert (size == sizeof (TC_REP));
+
+  if (! tc_rep_newlist)
+    {
+      int block_size = tc_rep_newlist_grow_size * sizeof (TC_REP);
+      tc_rep_newlist = (TC_REP *) new char [block_size];
+
+      for (int i = 0; i < tc_rep_newlist_grow_size - 1; i++)
+	tc_rep_newlist[i].freeptr = &tc_rep_newlist[i+1];
+
+      tc_rep_newlist[i].freeptr = 0;
+    }
+
+  TC_REP *tmp = tc_rep_newlist;
+  tc_rep_newlist = tc_rep_newlist->freeptr;
+  return tmp;
+}
+
+void
+TC_REP::operator delete (void *p, size_t size)
+{
+  TC_REP *tmp = (TC_REP *) p;
+  tmp->freeptr = tc_rep_newlist;
+  tc_rep_newlist = tmp;
+}
+
+int
+TC_REP::rows (void) const
+{
+  int retval = -1;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+    case complex_scalar_constant:
+      retval = 1;
+      break;
+
+    case string_constant:
+    case range_constant:
+      retval = (columns () > 0);
+      break;
+
+    case matrix_constant:
+      retval = matrix->rows ();
+      break;
+
+    case complex_matrix_constant:
+      retval = complex_matrix->rows ();
+      break;
+
+    default:
+      break;
+    }
+
+  return retval;
+}
+
+int
+TC_REP::columns (void) const
+{
+  int retval = -1;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+    case complex_scalar_constant:
+      retval = 1;
+      break;
+
+    case matrix_constant:
+      retval = matrix->columns ();
+      break;
+
+    case complex_matrix_constant:
+      retval = complex_matrix->columns ();
+      break;
+
+    case string_constant:
+      retval = strlen (string);
+      break;
+
+    case range_constant:
+      retval = range->nelem ();
+      break;
+
+    default:
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::all (void) const
+{
+  tree_constant retval;
+
+  if (error_state)
+    return retval;
+
+  if (! is_numeric_type ())
+    {
+      tree_constant tmp = make_numeric ();
+
+      if (error_state)
+	return retval;
+
+      return tmp.all ();
+    }
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      {
+	double status = (scalar != 0.0);
+	retval = tree_constant (status);
+      }
+      break;
+
+    case matrix_constant:
+      {
+	Matrix m = matrix->all ();
+	retval = tree_constant (m);
+      }
+      break;
+
+    case complex_scalar_constant:
+      {
+	double status = (*complex_scalar != 0.0);
+	retval = tree_constant (status);
+      }
+      break;
+
+    case complex_matrix_constant:
+      {
+	Matrix m = complex_matrix->all ();
+	retval = tree_constant (m);
+      }
+      break;
+
+    default:
+      gripe_wrong_type_arg ("all", *this);
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::any (void) const
+{
+  tree_constant retval;
+
+  if (error_state)
+    return retval;
+
+  if (! is_numeric_type ())
+    {
+      tree_constant tmp = make_numeric ();
+
+      if (error_state)
+	return retval;
+
+      return tmp.any ();
+    }
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      {
+	double status = (scalar != 0.0);
+	retval = tree_constant (status);
+      }
+      break;
+
+    case matrix_constant:
+      {
+	Matrix m = matrix->any ();
+	retval = tree_constant (m);
+      }
+      break;
+
+    case complex_scalar_constant:
+      {
+	double status = (*complex_scalar != 0.0);
+	retval = tree_constant (status);
+      }
+      break;
+
+    case complex_matrix_constant:
+      {
+	Matrix m = complex_matrix->any ();
+	retval = tree_constant (m);
+      }
+      break;
+
+    default:
+      gripe_wrong_type_arg ("any", *this);
+      break;
+    }
+
+  return retval;
+}
+
+int
+TC_REP::valid_as_scalar_index (void) const
+{
+  return (type_tag == magic_colon
+	  || (type_tag == scalar_constant 
+	      && ! xisnan (scalar)
+	      && NINT (scalar) == 1)
+	  || (type_tag == range_constant
+	      && range->nelem () == 1
+	      && ! xisnan (range->base ())
+	      && NINT (range->base ()) == 1));
+}
+
+int
+TC_REP::valid_as_zero_index (void) const
+{
+  return ((type_tag == scalar_constant
+	   && ! xisnan (scalar)
+	   && NINT (scalar) == 0)
+	  || (type_tag == matrix_constant
+	      && matrix->rows () == 0
+	      && matrix->columns () == 0)
+	  || (type_tag == range_constant
+	      && range->nelem () == 1
+	      && ! xisnan (range->base ())
+	      && NINT (range->base ()) == 0));
+}
+
+int
+TC_REP::is_true (void) const
+{
+  int retval = 0;
+
+  if (error_state)
+    return retval;
+
+  if (! is_numeric_type ())
+    {
+      tree_constant tmp = make_numeric ();
+
+      if (error_state)
+	return retval;
+
+      return tmp.is_true ();
+    }
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      retval = (scalar != 0.0);
+      break;
+
+    case matrix_constant:
+      {
+	Matrix m = (matrix->all ()) . all ();
+	retval = (m.rows () == 1
+		  && m.columns () == 1
+		  && m.elem (0, 0) != 0.0);
+      }
+      break;
+
+    case complex_scalar_constant:
+      retval = (*complex_scalar != 0.0);
+      break;
+
+    case complex_matrix_constant:
+      {
+	Matrix m = (complex_matrix->all ()) . all ();
+	retval = (m.rows () == 1
+		  && m.columns () == 1
+		  && m.elem (0, 0) != 0.0);
+      }
+      break;
+
+    default:
+      gripe_wrong_type_arg (0, *this);
+      break;
+    }
+
+  return retval;
+}
+
+static void
+warn_implicit_conversion (const char *from, const char *to)
+{
+  warning ("implicit conversion from %s to %s", from, to);
+}
+
+double
+TC_REP::double_value (int force_string_conversion) const
+{
+  double retval = octave_NaN;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      retval = scalar;
+      break;
+
+    case matrix_constant:
+      {
+	if (user_pref.do_fortran_indexing && rows () > 0 && columns () > 0)
+	  retval = matrix->elem (0, 0);
+	else
+	  gripe_invalid_conversion ("real matrix", "real scalar");
+      }
+      break;
+
+    case complex_matrix_constant:
+    case complex_scalar_constant:
+      {
+	int flag = user_pref.ok_to_lose_imaginary_part;
+
+	if (flag < 0)
+	  warn_implicit_conversion ("complex scalar", "real scalar");
+
+	if (flag)
+	  {
+	    if (type_tag == complex_scalar_constant)
+	      retval = ::real (*complex_scalar);
+	    else if (type_tag == complex_matrix_constant)
+	      {
+		if (user_pref.do_fortran_indexing
+		    && rows () > 0 && columns () > 0)
+		  retval = ::real (complex_matrix->elem (0, 0));
+		else
+		  gripe_invalid_conversion ("complex matrix", "real scalar");
+	      }
+	    else
+	      panic_impossible ();
+	  }
+	else
+	  gripe_invalid_conversion ("complex scalar", "real scalar");
+      }
+      break;
+
+    case string_constant:
+      {
+	int flag = force_string_conversion;
+	if (! flag)
+	  flag = user_pref.implicit_str_to_num_ok;
+
+	if (flag < 0)
+	  warn_implicit_conversion ("string", "real scalar");
+
+	int len = strlen (string);
+	if (flag && (len == 1 || (len > 1 && user_pref.do_fortran_indexing)))
+	  retval = toascii ((int) string[0]);
+	else
+	  gripe_invalid_conversion ("string", "real scalar");
+      }
+      break;
+
+    case range_constant:
+      {
+	int nel = range->nelem ();
+	if (nel == 1 || (nel > 1 && user_pref.do_fortran_indexing))
+	  retval = range->base ();
+	else
+	  gripe_invalid_conversion ("range", "real scalar");
+      }
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "real scalar");
+      break;
+    }
+
+  return retval;
+}
+
+Matrix
+TC_REP::matrix_value (int force_string_conversion) const
+{
+  Matrix retval;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      retval = Matrix (1, 1, scalar);
+      break;
+
+    case matrix_constant:
+      retval = *matrix;
+      break;
+
+    case complex_scalar_constant:
+    case complex_matrix_constant:
+      {
+	int flag = user_pref.ok_to_lose_imaginary_part;
+	if (flag < 0)
+	  warn_implicit_conversion ("complex matrix", "real matrix");
+
+	if (flag)
+	  {
+	    if (type_tag == complex_scalar_constant)
+	      retval = Matrix (1, 1, ::real (*complex_scalar));
+	    else if (type_tag == complex_matrix_constant)
+	      retval = ::real (*complex_matrix);
+	    else
+	      panic_impossible ();
+	  }
+	else
+	  gripe_invalid_conversion ("complex matrix", "real matrix");
+      }
+      break;
+
+    case string_constant:
+      {
+	int flag = force_string_conversion;
+	if (! flag)
+	  flag = user_pref.implicit_str_to_num_ok;
+
+	if (flag < 0)
+	  warn_implicit_conversion ("string", "real matrix");
+
+	if (flag)
+	  {
+	    int len = strlen (string);
+
+	    if (len > 0)
+	      {
+		retval.resize (1, len);
+
+		for (int i = 0; i < len; i++)
+		  retval.elem (0, i) = toascii ((int) string[i]);
+	      }
+	    else
+	      retval = Matrix ();
+	  }
+	else
+	  gripe_invalid_conversion ("string", "real matrix");
+      }
+      break;
+
+    case range_constant:
+      retval = range->matrix_value ();
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "real matrix");
+      break;
+    }
+
+  return retval;
+}
+
+Complex
+TC_REP::complex_value (int force_string_conversion) const
+{
+  Complex retval (octave_NaN, octave_NaN);
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+      retval = *complex_scalar;
+      break;
+
+    case scalar_constant:
+      retval = scalar;
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	if (user_pref.do_fortran_indexing && rows () > 0 && columns () > 0)
+	  {
+	    if (type_tag == complex_matrix_constant)
+	      retval = complex_matrix->elem (0, 0);
+	    else
+	      retval = matrix->elem (0, 0);
+	  }
+	else
+	  gripe_invalid_conversion ("real matrix", "real scalar");
+      }
+      break;
+
+    case string_constant:
+      {
+	int flag = force_string_conversion;
+	if (! flag)
+	  flag = user_pref.implicit_str_to_num_ok;
+
+	if (flag < 0)
+	  warn_implicit_conversion ("string", "complex scalar");
+
+	int len = strlen (string);
+	if (flag && (len == 1 || (len > 1 && user_pref.do_fortran_indexing)))
+	  retval = toascii ((int) string[0]);
+	else
+	  gripe_invalid_conversion ("string", "complex scalar");
+      }
+      break;
+
+    case range_constant:
+      {
+	int nel = range->nelem ();
+	if (nel == 1 || (nel > 1 && user_pref.do_fortran_indexing))
+	  retval = range->base ();
+	else
+	  gripe_invalid_conversion ("range", "complex scalar");
+      }
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "complex scalar");
+      break;
+    }
+
+  return retval;
+}
+
+ComplexMatrix
+TC_REP::complex_matrix_value (int force_string_conversion) const
+{
+  ComplexMatrix retval;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      retval = ComplexMatrix (1, 1, Complex (scalar));
+      break;
+
+    case complex_scalar_constant:
+      retval = ComplexMatrix (1, 1, *complex_scalar);
+      break;
+
+    case matrix_constant:
+      retval = ComplexMatrix (*matrix);
+      break;
+
+    case complex_matrix_constant:
+      retval = *complex_matrix;
+      break;
+
+    case string_constant:
+      {
+	int flag = force_string_conversion;
+	if (! flag)
+	  flag = user_pref.implicit_str_to_num_ok;
+
+	if (flag < 0)
+	  warn_implicit_conversion ("string", "complex matrix");
+
+	if (flag)
+	  {
+	    int len = strlen (string);
+
+	    retval.resize (1, len);
+
+	    if (len > 1)
+	      {
+		for (int i = 0; i < len; i++)
+		  retval.elem (0, i) = toascii ((int) string[i]);
+	      }
+	    else if (len == 1)
+	      retval.elem (0, 0) = toascii ((int) string[0]);
+	    else
+	      panic_impossible ();
+	  }
+	else
+	  gripe_invalid_conversion ("string", "real matrix");
+      }
+      break;
+
+    case range_constant:
+      retval = range->matrix_value ();
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "complex matrix");
+      break;
+    }
+
+  return retval;
+}
+
+char *
+TC_REP::string_value (void) const
+{
+  if (type_tag == string_constant)
+    return string;
+  else
+    {
+      gripe_invalid_conversion (type_as_string (), "string");
+      return 0;
+    }
+}
+
+Range
+TC_REP::range_value (void) const
+{
+  assert (type_tag == range_constant);
+  return *range;
+}
+
+Octave_map
+TC_REP::map_value (void) const
+{
+  assert (type_tag == map_constant);
+  return *a_map;
+}
+
+tree_constant&
+TC_REP::lookup_map_element (const char *name, int insert, int silent)
+{
+  static tree_constant retval;
+
+  if (type_tag == map_constant)
+    {
+      Pix idx = a_map->seek (name);
+
+      if (idx)
+	return a_map->contents (idx);
+      else if (insert)
+	return (*a_map) [name];
+      else if (! silent)
+	error ("structure has no member `%s'", name);
+    }
+  else if (! silent)
+    error ("invalid structure access attempted");
+
+  return retval;
+}
+
+// This could be made more efficient by doing all the work here rather
+// than relying on matrix_value() to do any possible type conversions.
+
+ColumnVector
+TC_REP::vector_value (int force_string_conversion,
+		      int force_vector_conversion) const
+{
+  ColumnVector retval;
+
+  Matrix m = matrix_value (force_string_conversion);
+
+  if (error_state)
+    return retval;
+
+  int nr = m.rows ();
+  int nc = m.columns ();
+  if (nr == 1)
+    {
+      retval.resize (nc);
+      for (int i = 0; i < nc; i++)
+	retval.elem (i) = m (0, i);
+    }
+  else if (nc == 1)
+    {
+      retval.resize (nr);
+      for (int i = 0; i < nr; i++)
+	retval.elem (i) = m.elem (i, 0);
+    }
+  else if (nr > 0 && nc > 0
+	   && (user_pref.do_fortran_indexing || force_vector_conversion))
+    {
+      retval.resize (nr * nc);
+      int k = 0;
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  retval.elem (k++) = m.elem (i, j);
+    }
+  else
+    gripe_invalid_conversion ("real matrix", "real vector");
+
+  return retval;
+}
+
+// This could be made more efficient by doing all the work here rather
+// than relying on complex_matrix_value() to do any possible type
+// conversions.
+
+ComplexColumnVector
+TC_REP::complex_vector_value (int force_string_conversion,
+			      int force_vector_conversion) const
+{
+  ComplexColumnVector retval;
+
+  ComplexMatrix m = complex_matrix_value (force_string_conversion);
+
+  if (error_state)
+    return retval;
+
+  int nr = m.rows ();
+  int nc = m.columns ();
+  if (nr == 1)
+    {
+      retval.resize (nc);
+      for (int i = 0; i < nc; i++)
+	retval.elem (i) = m (0, i);
+    }
+  else if (nc == 1)
+    {
+      retval.resize (nr);
+      for (int i = 0; i < nr; i++)
+	retval.elem (i) = m.elem (i, 0);
+    }
+  else if (nr > 0 && nc > 0
+	   && (user_pref.do_fortran_indexing || force_vector_conversion))
+    {
+      retval.resize (nr * nc);
+      int k = 0;
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  retval.elem (k++) = m.elem (i, j);
+    }
+  else
+    gripe_invalid_conversion ("complex matrix", "complex vector");
+
+  return retval;
+}
+
+tree_constant
+TC_REP::convert_to_str (void) const
+{
+  tree_constant retval;
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	double d = double_value ();
+
+	if (xisnan (d))
+	  {
+	    ::error ("invalid conversion from NaN to character");
+	    return retval;
+	  }
+	else
+	  {
+	    int i = NINT (d);
+// Warn about out of range conversions?
+	    char s[2];
+	    s[0] = (char) i;
+	    s[1] = '\0';
+	    retval = tree_constant (s);
+	  }
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	if (rows () == 0 && columns () == 0)
+	  {
+	    char s = '\0';
+	    retval = tree_constant (&s);
+	  }
+	else
+	  {
+	    ColumnVector v = vector_value ();
+	    int len = v.length ();
+	    if (len == 0)
+	      {
+		char s = '\0';
+		retval = tree_constant (&s);
+	      }
+	    else
+	      {
+		char *s = new char [len+1];
+		s[len] = '\0';
+		for (int i = 0; i < len; i++)
+		  {
+		    double d = v.elem (i);
+
+		    if (xisnan (d))
+		      {
+			::error ("invalid conversion from NaN to character");
+			delete [] s;
+			return retval;
+		      }
+		    else
+		      {
+			int ival = NINT (d);
+// Warn about out of range conversions?
+			s[i] = (char) ival;
+		      }
+		  }
+		retval = tree_constant (s);
+		delete [] s;
+	      }
+	  }
+      }
+      break;
+
+    case range_constant:
+      {
+	Range r = range_value ();
+	double b = r.base ();
+	double incr = r.inc ();
+	int nel = r.nelem ();
+	char *s = new char [nel+1];
+	s[nel] = '\0';
+	for (int i = 0; i < nel; i++)
+	  {
+	    double d = b + i * incr;
+
+	    if (xisnan (d))
+	      {
+		::error ("invalid conversion from NaN to character");
+		delete [] s;
+		return retval;
+	      }
+	    else
+	      {
+		int ival = NINT (d);
+// Warn about out of range conversions?
+		s[i] = (char) ival;
+	      }
+	  }
+	retval = tree_constant (s);
+	delete [] s;
+      }
+      break;
+
+    case string_constant:
+      retval = string;
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "string");
+      break;
+    }
+
+  return retval;
+}
+
+void
+TC_REP::convert_to_row_or_column_vector (void)
+{
+  assert (type_tag == matrix_constant || type_tag == complex_matrix_constant);
+
+  int nr = rows ();
+  int nc = columns ();
+
+  if (nr == 1 || nc == 1)
+    return;
+
+  int len = nr * nc;
+
+  assert (len > 0);
+
+  int new_nr = 1;
+  int new_nc = 1;
+
+  if (user_pref.prefer_column_vectors)
+    new_nr = len;
+  else
+    new_nc = len;
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *m = new Matrix (new_nr, new_nc);
+
+      double *cop_out = matrix->fortran_vec ();
+
+      for (int i = 0; i < len; i++)
+	{
+	  if (new_nr == 1)
+	    m->elem (0, i) = *cop_out++;
+	  else
+	    m->elem (i, 0) = *cop_out++;
+	}
+
+      delete matrix;
+      matrix = m;
+    }
+  else
+    {
+      ComplexMatrix *cm = new ComplexMatrix (new_nr, new_nc);
+
+      Complex *cop_out = complex_matrix->fortran_vec ();
+
+      for (int i = 0; i < len; i++)
+	{
+	  if (new_nr == 1)
+	    cm->elem (0, i) = *cop_out++;
+	  else
+	    cm->elem (i, 0) = *cop_out++;
+	}
+
+      delete complex_matrix;
+      complex_matrix = cm;
+    }
+}
+
+void
+TC_REP::force_numeric (int force_str_conv)
+{
+  switch (type_tag)
+    {
+    case scalar_constant:
+    case matrix_constant:
+    case complex_scalar_constant:
+    case complex_matrix_constant:
+      break;
+
+    case string_constant:
+      {
+	if (! force_str_conv && ! user_pref.implicit_str_to_num_ok)
+	  {
+	    ::error ("failed to convert `%s' to a numeric type --", string);
+	    ::error ("default conversion turned off");
+
+	    return;
+	  }
+
+	int len = strlen (string);
+	if (len > 1)
+	  {
+	    type_tag = matrix_constant;
+	    Matrix *tm = new Matrix (1, len);
+	    for (int i = 0; i < len; i++)
+	      tm->elem (0, i) = toascii ((int) string[i]);
+	    matrix = tm;
+	  }
+	else if (len == 1)
+	  {
+	    type_tag = scalar_constant;
+	    scalar = toascii ((int) string[0]);
+	  }
+	else if (len == 0)
+	  {
+	    type_tag = matrix_constant;
+	    matrix = new Matrix (0, 0);
+	  }
+	else
+	  panic_impossible ();
+      }
+      break;
+
+    case range_constant:
+      {
+	int len = range->nelem ();
+	if (len > 1)
+	  {
+	    type_tag = matrix_constant;
+	    Matrix *tm = new Matrix (1, len);
+	    double b = range->base ();
+	    double increment = range->inc ();
+	    for (int i = 0; i < len; i++)
+	      tm->elem (0, i) = b + i * increment;
+	    matrix = tm;
+	  }
+	else if (len == 1)
+	  {
+	    type_tag = scalar_constant;
+	    scalar = range->base ();
+	  }
+      }
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "numeric type");
+      break;
+    }
+}
+
+tree_constant
+TC_REP::make_numeric (int force_str_conv) const
+{
+  tree_constant retval;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      retval = tree_constant (scalar);
+      break;
+
+    case matrix_constant:
+      retval = tree_constant (*matrix);
+      break;
+
+    case complex_scalar_constant:
+      retval = tree_constant (*complex_scalar);
+      break;
+
+    case complex_matrix_constant:
+      retval = tree_constant (*complex_matrix);
+      break;
+
+    case string_constant:
+      retval = tree_constant (string);
+      retval.force_numeric (force_str_conv);
+      break;
+
+    case range_constant:
+      retval = tree_constant (*range);
+      retval.force_numeric (force_str_conv);
+      break;
+
+    default:
+      gripe_invalid_conversion (type_as_string (), "numeric value");
+      break;
+    }
+
+  return retval;
+}
+
+void
+TC_REP::bump_value (tree_expression::type etype)
+{
+  switch (etype)
+    {
+    case tree_expression::increment:
+      switch (type_tag)
+	{
+	case scalar_constant:
+	  scalar++;
+	  break;
+
+	case matrix_constant:
+	  *matrix = *matrix + 1.0;
+	  break;
+
+	case complex_scalar_constant:
+	  *complex_scalar = *complex_scalar + 1.0;
+	  break;
+
+	case complex_matrix_constant:
+	  *complex_matrix = *complex_matrix + 1.0;
+	  break;
+
+	case range_constant:
+	  range->set_base (range->base () + 1.0);
+	  range->set_limit (range->limit () + 1.0);
+	  break;
+
+	default:
+	  gripe_wrong_type_arg ("operator ++", type_as_string ());
+	  break;
+	}
+      break;
+
+    case tree_expression::decrement:
+      switch (type_tag)
+	{
+	case scalar_constant:
+	  scalar--;
+	  break;
+
+	case matrix_constant:
+	  *matrix = *matrix - 1.0;
+	  break;
+
+	case range_constant:
+	  range->set_base (range->base () - 1.0);
+	  range->set_limit (range->limit () - 1.0);
+	  break;
+
+	default:
+	  gripe_wrong_type_arg ("operator --", type_as_string ());
+	  break;
+	}
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+void
+TC_REP::resize (int i, int j)
+{
+  switch (type_tag)
+    {
+    case matrix_constant:
+      matrix->resize (i, j);
+      break;
+
+    case complex_matrix_constant:
+      complex_matrix->resize (i, j);
+      break;
+
+    default:
+      gripe_wrong_type_arg ("resize", type_as_string ());
+      break;
+    }
+}
+
+void
+TC_REP::resize (int i, int j, double val)
+{
+  switch (type_tag)
+    {
+    case matrix_constant:
+      matrix->resize (i, j, val);
+      break;
+
+    case complex_matrix_constant:
+      complex_matrix->resize (i, j, val);
+      break;
+
+    default:
+      gripe_wrong_type_arg ("resize", type_as_string ());
+      break;
+    }
+}
+
+void
+TC_REP::maybe_resize (int i, int j)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  i++;
+  j++;
+
+  assert (i > 0 && j > 0);
+
+  if (i > nr || j > nc)
+    {
+      if (user_pref.resize_on_range_error)
+	resize (MAX (i, nr), MAX (j, nc), 0.0);
+      else
+	{
+	  if (i > nr)
+	    ::error ("row index = %d exceeds max row dimension = %d", i, nr);
+
+	  if (j > nc)
+	    ::error ("column index = %d exceeds max column dimension = %d",
+		     j, nc);
+	}
+    }
+}
+
+void
+TC_REP::maybe_resize (int i, force_orient f_orient)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  i++;
+
+  assert (i >= 0 && (nr <= 1 || nc <= 1));
+
+// This function never reduces the size of a vector, and all vectors
+// have dimensions of at least 0x0.  If i is 0, it is either because
+// a vector has been indexed with a vector of all zeros (in which case
+// the index vector is empty and nothing will happen) or a vector has
+// been indexed with 0 (an error which will be caught elsewhere).
+  if (i == 0)
+    return;
+
+  if (nr <= 1 && nc <= 1 && i >= 1)
+    {
+      if (user_pref.resize_on_range_error)
+	{
+	  if (f_orient == row_orient)
+	    resize (1, i, 0.0);
+	  else if (f_orient == column_orient)
+	    resize (i, 1, 0.0);
+	  else if (user_pref.prefer_column_vectors)
+	    resize (i, 1, 0.0);
+	  else
+	    resize (1, i, 0.0);
+	}
+      else
+	::error ("matrix index = %d exceeds max dimension = %d", i, nc);
+    }
+  else if (nr == 1 && i > nc)
+    {
+      if (user_pref.resize_on_range_error)
+	resize (1, i, 0.0);
+      else
+	::error ("matrix index = %d exceeds max dimension = %d", i, nc);
+    }
+  else if (nc == 1 && i > nr)
+    {
+      if (user_pref.resize_on_range_error)
+	resize (i, 1, 0.0);
+      else
+	::error ("matrix index = %d exceeds max dimension = ", i, nc);
+    }
+}
+
+void
+TC_REP::stash_original_text (char *s)
+{
+  orig_text = strsave (s);
+}
+
+void
+TC_REP::maybe_mutate (void)
+{
+  if (error_state)
+    return;
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+      if (::imag (*complex_scalar) == 0.0)
+	{
+	  double d = ::real (*complex_scalar);
+	  delete complex_scalar;
+	  scalar = d;
+	  type_tag = scalar_constant;
+	}
+      break;
+
+    case complex_matrix_constant:
+      if (! any_element_is_complex (*complex_matrix))
+	{
+	  Matrix *m = new Matrix (::real (*complex_matrix));
+	  delete complex_matrix;
+	  matrix = m;
+	  type_tag = matrix_constant;
+	}
+      break;
+
+    default:
+      break;
+    }
+
+// Avoid calling rows() and columns() for things like magic_colon.
+
+  int nr = 1;
+  int nc = 1;
+  if (type_tag == matrix_constant
+      || type_tag == complex_matrix_constant
+      || type_tag == range_constant)
+    {
+      nr = rows ();
+      nc = columns ();
+    }
+
+  switch (type_tag)
+    {
+    case matrix_constant:
+      if (nr == 1 && nc == 1)
+	{
+	  double d = matrix->elem (0, 0);
+	  delete matrix;
+	  scalar = d;
+	  type_tag = scalar_constant;
+	}
+      break;
+
+    case complex_matrix_constant:
+      if (nr == 1 && nc == 1)
+	{
+	  Complex c = complex_matrix->elem (0, 0);
+	  delete complex_matrix;
+	  complex_scalar = new Complex (c);
+	  type_tag = complex_scalar_constant;
+	}
+      break;
+
+    case range_constant:
+      if (nr == 1 && nc == 1)
+	{
+	  double d = range->base ();
+	  delete range;
+	  scalar = d;
+	  type_tag = scalar_constant;
+	}
+      break;
+
+    default:
+      break;
+    }
+}
+
+void
+TC_REP::print (ostream& output_buf)
+{
+  if (error_state)
+    return;
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      octave_print_internal (output_buf, scalar);
+      break;
+
+    case matrix_constant:
+      octave_print_internal (output_buf, *matrix);
+      break;
+
+    case complex_scalar_constant:
+      octave_print_internal (output_buf, *complex_scalar);
+      break;
+
+    case complex_matrix_constant:
+      octave_print_internal (output_buf, *complex_matrix);
+      break;
+
+    case string_constant:
+      output_buf << string << "\n";
+      break;
+
+    case range_constant:
+      octave_print_internal (output_buf, *range);
+      break;
+
+    case map_constant:
+      {
+// XXX FIXME XXX -- would be nice to print the output in some standard
+// order.  Maybe all substructures first, maybe alphabetize entries,
+// etc.
+	begin_unwind_frame ("TC_REP_print");
+
+	unwind_protect_int (structure_indent_level);
+	unwind_protect_int (user_pref.struct_levels_to_print);
+
+	if (user_pref.struct_levels_to_print-- > 0)
+	  {
+	    output_buf << "{\n";
+
+	    increment_structure_indent_level ();
+
+	    for (Pix p = a_map->first (); p != 0; a_map->next (p))
+	      {
+		const char *key = a_map->key (p);
+		tree_constant val = a_map->contents (p);
+
+		output_buf.form ("%*s%s = ", structure_indent_level,
+				 "", key);
+
+		if (! (print_as_scalar (val) || print_as_structure (val))) 
+		  output_buf << "\n";
+
+		val.print (output_buf);
+	      }
+
+	    decrement_structure_indent_level ();
+
+	    output_buf.form ("%*s%s", structure_indent_level, "", "}\n");
+	  }
+	else
+	  output_buf << "<structure>\n";
+
+	run_unwind_frame ("TC_REP_print");
+      }
+      break;
+
+    case unknown_constant:
+    case magic_colon:
+    case all_va_args:
+      panic_impossible ();
+      break;
+    }
+}
+
+void
+TC_REP::print_code (ostream& os)
+{
+  switch (type_tag)
+    {
+    case scalar_constant:
+      if (orig_text)
+	os << orig_text;
+      else
+	octave_print_internal (os, scalar, 1);
+      break;
+
+    case matrix_constant:
+      octave_print_internal (os, *matrix, 1);
+      break;
+
+    case complex_scalar_constant:
+     {
+	double re = complex_scalar->real ();
+	double im = complex_scalar->imag ();
+
+// If we have the original text and a pure imaginary, just print the
+// original text, because this must be a constant that was parsed as
+// part of a function.
+
+	if (orig_text && re == 0.0 && im > 0.0)
+	  os << orig_text;
+	else
+	  octave_print_internal (os, *complex_scalar, 1);
+      }
+      break;
+
+    case complex_matrix_constant:
+      octave_print_internal (os, *complex_matrix, 1);
+      break;
+
+    case string_constant:
+      {
+	os << "\"";
+	char *s, *t = string;
+	while ((s = undo_string_escape (*t++)))
+	  os << s;
+	os << "\"";
+      }
+      break;
+
+    case range_constant:
+      octave_print_internal (os, *range, 1);
+      break;
+
+    case magic_colon:
+      os << ":";
+      break;
+
+    case all_va_args:
+      os << "all_va_args";
+      break;
+
+    case map_constant:
+    case unknown_constant:
+      panic_impossible ();
+      break;
+    }
+}
+
+void
+TC_REP::gripe_wrong_type_arg (const char *name,
+			      const tree_constant_rep& tcr) const
+{
+  if (name)
+    ::error ("%s: wrong type argument `%s'", name, tcr.type_as_string ());
+  else
+    ::error ("wrong type argument `%s'", name, tcr.type_as_string ());
+}
+
+char *
+TC_REP::type_as_string (void) const
+{
+  switch (type_tag)
+    {
+    case scalar_constant:
+      return "real scalar";
+
+    case matrix_constant:
+      return "real matrix";
+
+    case complex_scalar_constant:
+      return "complex scalar";
+
+    case complex_matrix_constant:
+      return "complex matrix";
+
+    case string_constant:
+      return "string";
+
+    case range_constant:
+      return "range";
+
+    case map_constant:
+      return "structure";
+
+    default:
+      return "<unknown type>";
+    }
+}
+
+tree_constant
+do_binary_op (tree_constant& a, tree_constant& b, tree_expression::type t)
+{
+  tree_constant retval;
+
+  int first_empty = (a.rows () == 0 || a.columns () == 0);
+  int second_empty = (b.rows () == 0 || b.columns () == 0);
+
+  if (first_empty || second_empty)
+    {
+      int flag = user_pref.propagate_empty_matrices;
+      if (flag < 0)
+	warning ("binary operation on empty matrix");
+      else if (flag == 0)
+	{
+	  ::error ("invalid binary operation on empty matrix");
+	  return retval;
+	}
+    }
+
+  tree_constant tmp_a = a.make_numeric ();
+
+  if (error_state)
+    return retval;
+
+  tree_constant tmp_b = b.make_numeric ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type a_type = tmp_a.const_type ();
+  TC_REP::constant_type b_type = tmp_b.const_type ();
+
+  double d1, d2;
+  Matrix m1, m2;
+  Complex c1, c2;
+  ComplexMatrix cm1, cm2;
+
+  switch (a_type)
+    {
+    case TC_REP::scalar_constant:
+
+      d1 = tmp_a.double_value ();
+
+      switch (b_type)
+	{
+	case TC_REP::scalar_constant:
+	  d2 = tmp_b.double_value ();
+	  retval = do_binary_op (d1, d2, t);
+	  break;
+
+	case TC_REP::matrix_constant:
+	  m2 = tmp_b.matrix_value ();
+	  retval = do_binary_op (d1, m2, t);
+	  break;
+
+	case TC_REP::complex_scalar_constant:
+	  c2 = tmp_b.complex_value ();
+	  retval = do_binary_op (d1, c2, t);
+	  break;
+
+	case TC_REP::complex_matrix_constant:
+	  cm2 = tmp_b.complex_matrix_value ();
+	  retval = do_binary_op (d1, cm2, t);
+	  break;
+
+	default:
+	  gripe_wrong_type_arg_for_binary_op (tmp_b);
+	  break;
+	}
+      break;
+
+    case TC_REP::matrix_constant:
+
+      m1 = tmp_a.matrix_value ();
+
+      switch (b_type)
+	{
+	case TC_REP::scalar_constant:
+	  d2 = tmp_b.double_value ();
+	  retval = do_binary_op (m1, d2, t);
+	  break;
+
+	case TC_REP::matrix_constant:
+	  m2 = tmp_b.matrix_value ();
+	  retval = do_binary_op (m1, m2, t);
+	  break;
+
+	case TC_REP::complex_scalar_constant:
+	  c2 = tmp_b.complex_value ();
+	  retval = do_binary_op (m1, c2, t);
+	  break;
+
+	case TC_REP::complex_matrix_constant:
+	  cm2 = tmp_b.complex_matrix_value ();
+	  retval = do_binary_op (m1, cm2, t);
+	  break;
+
+	default:
+	  gripe_wrong_type_arg_for_binary_op (tmp_b);
+	  break;
+	}
+      break;
+
+    case TC_REP::complex_scalar_constant:
+
+      c1 = tmp_a.complex_value ();
+
+      switch (b_type)
+	{
+	case TC_REP::scalar_constant:
+	  d2 = tmp_b.double_value ();
+	  retval = do_binary_op (c1, d2, t);
+	  break;
+
+	case TC_REP::matrix_constant:
+	  m2 = tmp_b.matrix_value ();
+	  retval = do_binary_op (c1, m2, t);
+	  break;
+
+	case TC_REP::complex_scalar_constant:
+	  c2 = tmp_b.complex_value ();
+	  retval = do_binary_op (c1, c2, t);
+	  break;
+
+	case TC_REP::complex_matrix_constant:
+	  cm2 = tmp_b.complex_matrix_value ();
+	  retval = do_binary_op (c1, cm2, t);
+	  break;
+
+	default:
+	  gripe_wrong_type_arg_for_binary_op (tmp_b);
+	  break;
+	}
+      break;
+
+    case TC_REP::complex_matrix_constant:
+
+      cm1 = tmp_a.complex_matrix_value ();
+
+      switch (b_type)
+	{
+	case TC_REP::scalar_constant:
+	  d2 = tmp_b.double_value ();
+	  retval = do_binary_op (cm1, d2, t);
+	  break;
+
+	case TC_REP::matrix_constant:
+	  m2 = tmp_b.matrix_value ();
+	  retval = do_binary_op (cm1, m2, t);
+	  break;
+
+	case TC_REP::complex_scalar_constant:
+	  c2 = tmp_b.complex_value ();
+	  retval = do_binary_op (cm1, c2, t);
+	  break;
+
+	case TC_REP::complex_matrix_constant:
+	  cm2 = tmp_b.complex_matrix_value ();
+	  retval = do_binary_op (cm1, cm2, t);
+	  break;
+
+	default:
+	  gripe_wrong_type_arg_for_binary_op (tmp_b);
+	  break;
+	}
+      break;
+
+    default:
+      gripe_wrong_type_arg_for_binary_op (tmp_a);
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+do_unary_op (tree_constant& a, tree_expression::type t)
+{
+  tree_constant retval;
+
+  if (a.rows () == 0 || a.columns () == 0)
+    {
+      int flag = user_pref.propagate_empty_matrices;
+      if (flag < 0)
+	warning ("unary operation on empty matrix");
+      else if (flag == 0)
+	{
+	  ::error ("invalid unary operation on empty matrix");
+	  return retval;
+	}
+    }
+
+  tree_constant tmp_a = a.make_numeric ();
+
+  if (error_state)
+    return retval;
+
+  switch (tmp_a.const_type ())
+    {
+    case TC_REP::scalar_constant:
+      retval = do_unary_op (tmp_a.double_value (), t);
+      break;
+
+    case TC_REP::matrix_constant:
+      {
+	Matrix m = tmp_a.matrix_value ();
+	retval = do_unary_op (m, t);
+      }
+      break;
+
+    case TC_REP::complex_scalar_constant:
+      retval = do_unary_op (tmp_a.complex_value (), t);
+      break;
+
+    case TC_REP::complex_matrix_constant:
+      {
+	ComplexMatrix m = tmp_a.complex_matrix_value ();
+	retval = do_unary_op (m, t);
+      }
+      break;
+
+    default:
+      gripe_wrong_type_arg_for_unary_op (tmp_a);
+      break;
+    }
+
+  return retval;
+}
+
+// -------------------------------------------------------------------
+//
+// Indexing operations for the tree-constant representation class.
+//
+// Leave the commented #includes below to make it easy to split this
+// out again, should we want to do that.
+//
+// -------------------------------------------------------------------
+
+// #ifdef HAVE_CONFIG_H
+// #include <config.h>
+// #endif
+
+// #include <ctype.h>
+// #include <string.h>
+// #include <fstream.h>
+// #include <iostream.h>
+// #include <strstream.h>
+
+// #include "mx-base.h"
+// #include "Range.h"
+
+// #include "arith-ops.h"
+// #include "variables.h"
+// #include "sysdep.h"
+// #include "error.h"
+// #include "gripes.h"
+// #include "user-prefs.h"
+// #include "utils.h"
+// #include "pager.h"
+// #include "pr-output.h"
+// #include "tree-const.h"
+// #include "idx-vector.h"
+// #include "oct-map.h"
+
+// #include "tc-inlines.h"
+
+// Indexing functions.
+
+// This is the top-level indexing function.
+
+tree_constant
+TC_REP::do_index (const Octave_object& args)
+{
+  tree_constant retval;
+
+  if (error_state)
+    return retval;
+
+  if (rows () == 0 || columns () == 0)
+    {
+      switch (args.length ())
+	{
+	case 2:
+	  if (! args(1).is_magic_colon ()
+	      && args(1).rows () != 0 && args(1).columns () != 0)
+	    goto index_error;
+
+	case 1:
+	  if (! args(0).is_magic_colon ()
+	      && args(0).rows () != 0 && args(0).columns () != 0)
+	    goto index_error;
+
+	  return Matrix ();
+
+	default:
+	index_error:
+	  ::error ("attempt to index empty matrix");
+	  return retval;
+	}
+    }
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      retval = do_scalar_index (args);
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      retval = do_matrix_index (args);
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+//      retval = do_string_index (args);
+      break;
+
+    default:
+
+// This isn\'t great, but it\'s easier than implementing a lot of
+// other special indexing functions.
+
+      force_numeric ();
+
+      if (! error_state && is_numeric_type ())
+	retval = do_index (args);
+
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_scalar_index (const Octave_object& args) const
+{
+  tree_constant retval;
+
+  if (valid_scalar_indices (args))
+    {
+      if (type_tag == scalar_constant)
+	retval = scalar;
+      else if (type_tag == complex_scalar_constant)
+	retval = *complex_scalar;
+      else
+	panic_impossible ();
+
+      return retval;
+    }
+  else
+    {
+      int rows = -1;
+      int cols = -1;
+
+      int nargin = args.length ();
+
+      switch (nargin)
+	{
+	case 2:
+	  {
+	    tree_constant arg = args(1);
+
+	    if (arg.is_matrix_type ())
+	      {
+		Matrix mj = arg.matrix_value ();
+
+		idx_vector j (mj, user_pref.do_fortran_indexing, "", 1);
+		if (! j)
+		  return retval;
+
+		int jmax = j.max ();
+		int len = j.length ();
+		if (len == j.ones_count ())
+		  cols = len;
+		else if (jmax > 0)
+		  {
+		    error ("invalid scalar index = %d", jmax+1);
+		    return retval;
+		  }
+	      }
+	    else if (arg.const_type () == magic_colon)
+	      {
+		cols = 1;
+	      }
+	    else if (arg.is_scalar_type ())
+	      {
+		double dval = arg.double_value ();
+		if (! xisnan (dval))
+		  {
+		    int ival = NINT (dval);
+		    if (ival == 1)
+		      cols = 1;
+		    else if (ival == 0)
+		      cols = 0;
+		    else
+		      break;;
+		  }
+		else
+		  break;
+	      }
+	    else
+	      break;
+	  }
+
+// Fall through...
+
+	case 1:
+	  {
+	    tree_constant arg = args(0);
+
+	    if (arg.is_matrix_type ())
+	      {
+		Matrix mi = arg.matrix_value ();
+
+		idx_vector i (mi, user_pref.do_fortran_indexing, "", 1);
+		if (! i)
+		  return retval;
+
+		int imax = i.max ();
+		int len = i.length ();
+		if (len == i.ones_count ())
+		  rows = len;
+		else if (imax > 0)
+		  {
+		    error ("invalid scalar index = %d", imax+1);
+		    return retval;
+		  }
+	      }
+	    else if (arg.const_type () == magic_colon)
+	      {
+		rows = 1;
+	      }
+	    else if (arg.is_scalar_type ())
+	      {
+		double dval = arg.double_value ();
+
+		if (! xisnan (dval))
+		  {
+		    int ival = NINT (dval);
+		    if (ival == 1)
+		      rows = 1;
+		    else if (ival == 0)
+		      rows = 0;
+		    else
+		      break;
+		  }
+		else
+		  break;
+	      }
+	    else
+	      break;
+
+// If only one index, cols will not be set, so we set it.
+// If single index is [], rows will be zero, and we should set cols to
+// zero too.
+
+	    if (cols < 0)
+	      {
+		if (rows == 0)
+		  cols = 0;
+		else
+		  {
+		    if (user_pref.prefer_column_vectors)
+		      cols = 1;
+		    else
+		      {
+			cols = rows;
+			rows = 1;
+		      }
+		  }
+	      }
+
+	    if (type_tag == scalar_constant)
+	      {
+		return Matrix (rows, cols, scalar);
+	      }
+	    else if (type_tag == complex_scalar_constant)
+	      {
+		return ComplexMatrix (rows, cols, *complex_scalar);
+	      }
+	    else
+	      panic_impossible ();
+	  }
+	  break;
+
+	default:
+	  ::error ("invalid number of arguments for scalar type");
+	  return tree_constant ();
+	  break;
+	}
+    }
+
+  ::error ("index invalid or out of range for scalar type");
+  return tree_constant ();
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Octave_object& args) const
+{
+  tree_constant retval;
+
+  int nargin = args.length ();
+
+  switch (nargin)
+    {
+    case 1:
+      {
+	tree_constant arg = args(0);
+
+	if (arg.is_undefined ())
+	  ::error ("matrix index is a null expression");
+	else
+	  retval = do_matrix_index (arg);
+      }
+      break;
+
+    case 2:
+      {
+	tree_constant arg_a = args(0);
+	tree_constant arg_b = args(1);
+
+	if (arg_a.is_undefined ())
+	::error ("first matrix index is a null expression");
+	else if (arg_b.is_undefined ())
+	  ::error ("second matrix index is a null expression");
+	else
+	  retval = do_matrix_index (arg_a, arg_b);
+      }
+      break;
+
+    default:
+      if (nargin == 0)
+	::error ("matrix indices expected, but none provided");
+      else
+	::error ("too many indices for matrix expression");
+      break;
+    }
+
+  return  retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const tree_constant& i_arg) const
+{
+  tree_constant retval;
+
+  int nr = rows ();
+  int nc = columns ();
+
+  if (user_pref.do_fortran_indexing)
+    retval = fortran_style_matrix_index (i_arg);
+  else if (nr <= 1 || nc <= 1)
+    retval = do_vector_index (i_arg);
+  else
+    ::error ("single index only valid for row or column vector");
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const tree_constant& i_arg,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+        int i = tree_to_mat_idx (tmp_i.double_value ());
+	retval = do_matrix_index (i, j_arg);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	idx_vector iv (mi, user_pref.do_fortran_indexing, "row", rows ());
+	if (! iv)
+	  return tree_constant ();
+
+	if (iv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  retval = do_matrix_index (iv, j_arg);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range ri = tmp_i.range_value ();
+	int nr = rows ();
+	if (nr == 2 && is_zero_one (ri))
+	  {
+	    retval = do_matrix_index (1, j_arg);
+	  }
+	else if (nr == 2 && is_one_zero (ri))
+	  {
+	    retval = do_matrix_index (0, j_arg);
+	  }
+	else
+	  {
+	    if (index_check (ri, "row") < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ri, j_arg);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (magic_colon, j_arg);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+  int nr =  rows ();
+  int nc =  columns ();
+  int size = nr * nc;
+  if (size > 0)
+    {
+      CRMATRIX (m, cm, size, 1);
+      int idx = 0;
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  {
+	    CRMATRIX_ASSIGN_REP_ELEM (m, cm, idx, 0, i, j);
+	    idx++;
+	  }
+      ASSIGN_CRMATRIX_TO (retval, m, cm);
+    }
+  return retval;
+}
+
+tree_constant
+TC_REP::fortran_style_matrix_index (const tree_constant& i_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_i = i_arg.make_numeric_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	double dval = tmp_i.double_value ();
+
+	if (xisnan (dval))
+	  {
+	    ::error ("NaN is invalid as a matrix index");
+	    return tree_constant ();
+	  }
+	else
+	  {
+	    int i = NINT (dval);
+	    int ii = fortran_row (i, nr) - 1;
+	    int jj = fortran_column (i, nr) - 1;
+	    if (index_check (i-1, "") < 0)
+	      return tree_constant ();
+	    if (range_max_check (i-1, nr * nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ii, jj);
+	  }
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	if (mi.rows () == 0 || mi.columns () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+// Yes, we really do want to call this with mi.
+	    retval = fortran_style_matrix_index (mi);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      gripe_range_invalid ();
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::fortran_style_matrix_index (const Matrix& mi) const
+{
+  assert (is_matrix_type ());
+
+  tree_constant retval;
+
+  int nr = rows ();
+  int nc = columns ();
+
+  int len = nr * nc;
+
+  int index_nr = mi.rows ();
+  int index_nc = mi.columns ();
+
+  if (index_nr >= 1 && index_nc >= 1)
+    {
+      const double *cop_out = 0;
+      const Complex *c_cop_out = 0;
+      int real_type = type_tag == matrix_constant;
+      if (real_type)
+	cop_out = matrix->data ();
+      else
+	c_cop_out = complex_matrix->data ();
+
+      const double *cop_out_index = mi.data ();
+
+      idx_vector iv (mi, 1, "", len);
+      if (! iv || range_max_check (iv.max (), len) < 0)
+	return retval;
+
+      int result_size = iv.length ();
+
+// XXX FIXME XXX -- there is way too much duplicate code here...
+
+      if (iv.one_zero_only ())
+	{
+	  if (iv.ones_count () == 0)
+	    {
+	      retval = Matrix ();
+	    }
+	  else
+	    {
+	      if (nr == 1)
+		{
+		  CRMATRIX (m, cm, 1, result_size);
+
+		  for (int i = 0; i < result_size; i++)
+		    {
+		      int idx = iv.elem (i);
+		      CRMATRIX_ASSIGN_ELEM (m, cm, 0, i, cop_out [idx],
+					    c_cop_out [idx], real_type);
+		    }
+
+		  ASSIGN_CRMATRIX_TO (retval, m, cm);
+		}
+	      else
+		{
+		  CRMATRIX (m, cm, result_size, 1);
+
+		  for (int i = 0; i < result_size; i++)
+		    {
+		      int idx = iv.elem (i);
+		      CRMATRIX_ASSIGN_ELEM (m, cm, i, 0, cop_out [idx],
+					    c_cop_out [idx], real_type);
+		    }
+
+		  ASSIGN_CRMATRIX_TO (retval, m, cm);
+		}
+	    }
+	}
+      else if (nc == 1)
+	{
+	  CRMATRIX (m, cm, result_size, 1);
+
+	  for (int i = 0; i < result_size; i++)
+	    {
+	      int idx = iv.elem (i);
+	      CRMATRIX_ASSIGN_ELEM (m, cm, i, 0, cop_out [idx],
+				    c_cop_out [idx], real_type);
+	    }
+
+	  ASSIGN_CRMATRIX_TO (retval, m, cm);
+	}
+      else if (nr == 1)
+	{
+	  CRMATRIX (m, cm, 1, result_size);
+
+	  for (int i = 0; i < result_size; i++)
+	    {
+	      int idx = iv.elem (i);
+	      CRMATRIX_ASSIGN_ELEM (m, cm, 0, i, cop_out [idx],
+				    c_cop_out [idx], real_type);
+	    }
+
+	  ASSIGN_CRMATRIX_TO (retval, m, cm);
+	}
+      else
+	{
+	  CRMATRIX (m, cm, index_nr, index_nc);
+
+	  for (int j = 0; j < index_nc; j++)
+	    for (int i = 0; i < index_nr; i++)
+	      {
+		double tmp = *cop_out_index++;
+		int idx = tree_to_mat_idx (tmp);
+		CRMATRIX_ASSIGN_ELEM (m, cm, i, j, cop_out [idx],
+				      c_cop_out [idx], real_type);
+	      }
+
+	  ASSIGN_CRMATRIX_TO (retval, m, cm);
+	}
+    }
+  else
+    {
+      if (index_nr == 0 || index_nc == 0)
+	::error ("empty matrix invalid as index");
+      else
+	::error ("invalid matrix index");
+      return tree_constant ();
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_vector_index (const tree_constant& i_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  int len = MAX (nr, nc);
+
+  assert ((nr == 1 || nc == 1) && ! user_pref.do_fortran_indexing);
+
+  int swap_indices = (nr == 1);
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+        int i = tree_to_mat_idx (tmp_i.double_value ());
+        if (index_check (i, "") < 0)
+	  return tree_constant ();
+        if (swap_indices)
+          {
+	    if (range_max_check (i, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (0, i);
+          }
+        else
+          {
+	    if (range_max_check (i, nr) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (i, 0);
+          }
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+        Matrix mi = tmp_i.matrix_value ();
+	if (mi.rows () == 0 || mi.columns () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    idx_vector iv (mi, user_pref.do_fortran_indexing, "", len);
+	    if (! iv)
+	      return tree_constant ();
+
+	    if (swap_indices)
+	      {
+		if (range_max_check (iv.max (), nc) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (0, iv);
+	      }
+	    else
+	      {
+		if (range_max_check (iv.max (), nr) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (iv, 0);
+	      }
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+        Range ri = tmp_i.range_value ();
+	if (len == 2 && is_zero_one (ri))
+	  {
+	    if (swap_indices)
+	      retval = do_matrix_index (0, 1);
+	    else
+	      retval = do_matrix_index (1, 0);
+	  }
+	else if (len == 2 && is_one_zero (ri))
+	  {
+	    retval = do_matrix_index (0, 0);
+	  }
+	else
+	  {
+	    if (index_check (ri, "") < 0)
+	      return tree_constant ();
+	    if (swap_indices)
+	      {
+		if (range_max_check (tree_to_mat_idx (ri.max ()), nc) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (0, ri);
+	      }
+	    else
+	      {
+		if (range_max_check (tree_to_mat_idx (ri.max ()), nr) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (ri, 0);
+	      }
+	  }
+      }
+      break;
+
+    case magic_colon:
+      if (swap_indices)
+        retval = do_matrix_index (0, magic_colon);
+      else
+        retval = do_matrix_index (magic_colon, 0);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return tree_constant ();
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (i, j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (i, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return tree_constant ();
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (i, jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (i, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return tree_constant ();
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (i, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (i, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (i, tree_to_mat_idx (rj.max ()), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (i, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      if (i == -1 && nr == 1)
+	return Matrix ();
+      if (index_check (i, "row") < 0
+	  || range_max_check (i, 0, nr, nc) < 0)
+	return tree_constant ();
+      retval = do_matrix_index (i, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (iv.max (), j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (iv, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (iv.max (), jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (iv, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (iv, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (iv, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (iv.max (), tree_to_mat_idx (rj.max ()),
+				 nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (iv, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      if (range_max_check (iv.max (), 0, nr, nc) < 0)
+	return tree_constant ();
+      retval = do_matrix_index (iv, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (tree_to_mat_idx (ri.max ()), j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (ri, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (tree_to_mat_idx (ri.max ()),
+				 jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ri, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (ri, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (ri, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (tree_to_mat_idx (ri.max ()),
+				 tree_to_mat_idx (rj.max ()), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ri, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	if (index_check (ri, "row") < 0)
+	  return tree_constant ();
+	if (range_max_check (tree_to_mat_idx (ri.max ()), 0, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (ri, magic_colon);
+      }
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return retval;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (j == -1 && nc == 1)
+	  return Matrix ();
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (0, j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (magic_colon, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (0, jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (magic_colon, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (magic_colon, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (magic_colon, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (0, tree_to_mat_idx (rj.max ()), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (magic_colon, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (magic_colon, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, int j) const
+{
+  tree_constant retval;
+
+  if (type_tag == matrix_constant)
+    retval = tree_constant (matrix->elem (i, j));
+  else
+    retval = tree_constant (complex_matrix->elem (i, j));
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, const idx_vector& jv) const
+{
+  tree_constant retval;
+
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, 1, jlen);
+
+  for (int j = 0; j < jlen; j++)
+    {
+      int col = jv.elem (j);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, 0, j, i, col);
+    }
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, const Range& rj) const
+{
+  tree_constant retval;
+
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, 1, jlen);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+  for (int j = 0; j < jlen; j++)
+    {
+      double tmp = b + j * increment;
+      int col = tree_to_mat_idx (tmp);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, 0, j, i, col);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, TC_REP::constant_type mcj) const
+{
+  assert (mcj == magic_colon);
+
+  tree_constant retval;
+
+  int nc = columns ();
+
+  CRMATRIX (m, cm, 1, nc);
+
+  for (int j = 0; j < nc; j++)
+    {
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, 0, j, i, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv, int j) const
+{
+  tree_constant retval;
+
+  int ilen = iv.capacity ();
+
+  CRMATRIX (m, cm, ilen, 1);
+
+  for (int i = 0; i < ilen; i++)
+    {
+      int row = iv.elem (i);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, 0, row, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv, const idx_vector& jv) const
+{
+  tree_constant retval;
+
+  int ilen = iv.capacity ();
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  for (int i = 0; i < ilen; i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < jlen; j++)
+	{
+	  int col = jv.elem (j);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv, const Range& rj) const
+{
+  tree_constant retval;
+
+  int ilen = iv.capacity ();
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+
+  for (int i = 0; i < ilen; i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < jlen; j++)
+	{
+	  double tmp = b + j * increment;
+	  int col = tree_to_mat_idx (tmp);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv,
+			 TC_REP::constant_type mcj) const
+{
+  assert (mcj == magic_colon);
+
+  tree_constant retval;
+
+  int nc = columns ();
+  int ilen = iv.capacity ();
+
+  CRMATRIX (m, cm, ilen, nc);
+
+  for (int j = 0; j < nc; j++)
+    {
+      for (int i = 0; i < ilen; i++)
+	{
+	  int row = iv.elem (i);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, j);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri, int j) const
+{
+  tree_constant retval;
+
+  int ilen = ri.nelem ();
+
+  CRMATRIX (m, cm, ilen, 1);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+  for (int i = 0; i < ilen; i++)
+    {
+      double tmp = b + i * increment;
+      int row = tree_to_mat_idx (tmp);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, 0, row, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri,
+			 const idx_vector& jv) const
+{
+  tree_constant retval;
+
+  int ilen = ri.nelem ();
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+  for (int i = 0; i < ilen; i++)
+    {
+      double tmp = b + i * increment;
+      int row = tree_to_mat_idx (tmp);
+      for (int j = 0; j < jlen; j++)
+	{
+	  int col = jv.elem (j);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri, const Range& rj) const
+{
+  tree_constant retval;
+
+  int ilen = ri.nelem ();
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  for (int i = 0; i < ilen; i++)
+    {
+      double itmp = ib + i * iinc;
+      int row = tree_to_mat_idx (itmp);
+      for (int j = 0; j < jlen; j++)
+	{
+	  double jtmp = jb + j * jinc;
+	  int col = tree_to_mat_idx (jtmp);
+
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri, TC_REP::constant_type mcj) const
+{
+  assert (mcj == magic_colon);
+
+  tree_constant retval;
+
+  int nc = columns ();
+
+  int ilen = ri.nelem ();
+
+  CRMATRIX (m, cm, ilen, nc);
+
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+
+  for (int i = 0; i < ilen; i++)
+    {
+      double itmp = ib + i * iinc;
+      int row = tree_to_mat_idx (itmp);
+      for (int j = 0; j < nc; j++)
+	{
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, j);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci, int j) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+
+  int nr = rows ();
+
+  CRMATRIX (m, cm, nr, 1);
+
+  for (int i = 0; i < nr; i++)
+    {
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, 0, i, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci,
+			 const idx_vector& jv) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+
+  int nr = rows ();
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, nr, jlen);
+
+  for (int i = 0; i < nr; i++)
+    {
+      for (int j = 0; j < jlen; j++)
+	{
+	  int col = jv.elem (j);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, i, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci, const Range& rj) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+
+  int nr = rows ();
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, nr, jlen);
+
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  for (int j = 0; j < jlen; j++)
+    {
+      double jtmp = jb + j * jinc;
+      int col = tree_to_mat_idx (jtmp);
+      for (int i = 0; i < nr; i++)
+	{
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, i, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci,
+			 TC_REP::constant_type mcj) const
+{
+  tree_constant retval;
+
+  assert (mci == magic_colon && mcj == magic_colon);
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+      retval = *complex_scalar;
+      break;
+
+    case scalar_constant:
+      retval = scalar;
+      break;
+
+    case complex_matrix_constant:
+      retval = *complex_matrix;
+      break;
+
+    case matrix_constant:
+      retval = *matrix;
+      break;
+
+    case range_constant:
+      retval = *range;
+      break;
+
+    case string_constant:
+      retval = string;
+      break;
+
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+// -------------------------------------------------------------------
+//
+// Assignment operations for the tree-constant representation class.
+//
+// Leave the commented #includes below to make it easy to split this
+// out again, should we want to do that.
+//
+// -------------------------------------------------------------------
+
+// #ifdef HAVE_CONFIG_H
+// #include <config.h>
+// #endif
+
+// #include <ctype.h>
+// #include <string.h>
+// #include <fstream.h>
+// #include <iostream.h>
+// #include <strstream.h>
+
+// #include "mx-base.h"
+// #include "Range.h"
+
+// #include "arith-ops.h"
+// #include "variables.h"
+// #include "sysdep.h"
+// #include "error.h"
+// #include "gripes.h"
+// #include "user-prefs.h"
+// #include "utils.h"
+// #include "pager.h"
+// #include "pr-output.h"
+// #include "tree-const.h"
+// #include "idx-vector.h"
+// #include "oct-map.h"
+
+// #include "tc-inlines.h"
+
+// Top-level tree-constant function that handles assignments.  Only
+// decide if the left-hand side is currently a scalar or a matrix and
+// hand off to other functions to do the real work.
+
+void
+TC_REP::assign (tree_constant& rhs, const Octave_object& args)
+{
+  tree_constant rhs_tmp = rhs.make_numeric ();
+
+  if (error_state)
+    return;
+
+// This is easier than actually handling assignments to strings.
+// An assignment to a range will normally require a conversion to a
+// vector since it will normally destroy the equally-spaced property
+// of the range elements.
+
+  if (is_defined () && ! is_numeric_type ())
+    force_numeric ();
+
+  if (error_state)
+    return;
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+    case unknown_constant:
+      do_scalar_assignment (rhs_tmp, args);
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      do_matrix_assignment (rhs_tmp, args);
+      break;
+
+    default:
+      ::error ("invalid assignment to %s", type_as_string ());
+      break;
+    }
+}
+
+// Assignments to scalars.  If resize_on_range_error is true,
+// this can convert the left-hand side to a matrix.
+
+void
+TC_REP::do_scalar_assignment (const tree_constant& rhs,
+			      const Octave_object& args) 
+{
+  assert (type_tag == unknown_constant
+	  || type_tag == scalar_constant
+	  || type_tag == complex_scalar_constant);
+
+  int nargin = args.length ();
+
+  if (rhs.is_zero_by_zero ())
+    {
+      if (valid_scalar_indices (args))
+	{
+	  if (type_tag == complex_scalar_constant)
+	    delete complex_scalar;
+
+	  matrix = new Matrix (0, 0);
+	  type_tag = matrix_constant;
+	}
+      else if (! valid_zero_index (args))
+	{
+	  ::error ("invalid assigment of empty matrix to scalar");
+	  return;
+	}
+    }
+  else if (rhs.is_scalar_type () && valid_scalar_indices (args))
+    {
+      if (type_tag == unknown_constant || type_tag == scalar_constant)
+	{
+	  if (rhs.const_type () == scalar_constant)
+	    {
+	      scalar = rhs.double_value ();
+	      type_tag = scalar_constant;
+	    }
+	  else if (rhs.const_type () == complex_scalar_constant)
+	    {
+	      complex_scalar = new Complex (rhs.complex_value ());
+	      type_tag = complex_scalar_constant;
+	    }
+	  else
+	    {
+	      ::error ("invalid assignment to scalar");
+	      return;
+	    }
+	}
+      else
+	{
+	  if (rhs.const_type () == scalar_constant)
+	    {
+	      delete complex_scalar;
+	      scalar = rhs.double_value ();
+	      type_tag = scalar_constant;
+	    }
+	  else if (rhs.const_type () == complex_scalar_constant)
+	    {
+	      *complex_scalar = rhs.complex_value ();
+	      type_tag = complex_scalar_constant;
+	    }
+	  else
+	    {
+	      ::error ("invalid assignment to scalar");
+	      return;
+	    }
+	}
+    }
+  else if (user_pref.resize_on_range_error)
+    {
+      TC_REP::constant_type old_type_tag = type_tag;
+
+      if (type_tag == complex_scalar_constant)
+	{
+	  Complex *old_complex = complex_scalar;
+	  complex_matrix = new ComplexMatrix (1, 1, *complex_scalar);
+	  type_tag = complex_matrix_constant;
+	  delete old_complex;
+	}
+      else if (type_tag == scalar_constant)
+	{
+	  matrix = new Matrix (1, 1, scalar);
+	  type_tag = matrix_constant;
+	}
+
+// If there is an error, the call to do_matrix_assignment should not
+// destroy the current value.
+// TC_REP::eval(int) will take
+// care of converting single element matrices back to scalars.
+
+      do_matrix_assignment (rhs, args);
+
+// I don't think there's any other way to revert back to unknown
+// constant types, so here it is.
+
+      if (old_type_tag == unknown_constant && error_state)
+	{
+	  if (type_tag == matrix_constant)
+	    delete matrix;
+	  else if (type_tag == complex_matrix_constant)
+	    delete complex_matrix;
+
+	  type_tag = unknown_constant;
+	}
+    }
+  else if (nargin > 2 || nargin < 1)
+    ::error ("invalid index expression for scalar type");
+  else
+    ::error ("index invalid or out of range for scalar type");
+}
+
+// Assignments to matrices (and vectors).
+//
+// For compatibility with Matlab, we allow assignment of an empty
+// matrix to an expression with empty indices to do nothing.
+
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      const Octave_object& args)
+{
+  assert (type_tag == unknown_constant
+	  || type_tag == matrix_constant
+	  || type_tag == complex_matrix_constant);
+
+  if (type_tag == matrix_constant && rhs.is_complex_type ())
+    {
+      Matrix *old_matrix = matrix;
+      complex_matrix = new ComplexMatrix (*matrix);
+      type_tag = complex_matrix_constant;
+      delete old_matrix;
+    }
+  else if (type_tag == unknown_constant)
+    {
+      if (rhs.is_complex_type ())
+	{
+	  complex_matrix = new ComplexMatrix ();
+	  type_tag = complex_matrix_constant;
+	}
+      else
+	{
+	  matrix = new Matrix ();
+	  type_tag = matrix_constant;
+	}
+    }
+
+  int nargin = args.length ();
+
+// The do_matrix_assignment functions can't handle empty matrices, so
+// don't let any pass through here.
+  switch (nargin)
+    {
+    case 1:
+      {
+	tree_constant arg = args(0);
+
+	if (arg.is_undefined ())
+	  ::error ("matrix index is undefined");
+	else
+	  do_matrix_assignment (rhs, arg);
+      }
+      break;
+
+    case 2:
+      {
+	tree_constant arg_a = args(0);
+	tree_constant arg_b = args(1);
+
+	if (arg_a.is_undefined ())
+	  ::error ("first matrix index is undefined");
+	else if (arg_b.is_undefined ())
+	  ::error ("second matrix index is undefined");
+	else if (arg_a.is_empty () || arg_b.is_empty ())
+	  {
+	    if (! rhs.is_empty ())
+	      {
+		::error ("in assignment expression, a matrix index is empty");
+		::error ("but the right hand side is not an empty matrix");
+	      }
+// XXX FIXME XXX -- to really be correct here, we should probably
+// check to see if the assignment conforms, but that seems like more
+// work than it's worth right now...
+	  }
+	else
+	  do_matrix_assignment (rhs, arg_a, arg_b);
+      }
+      break;
+
+    default:
+      if (nargin == 0)
+	::error ("matrix indices expected, but none provided");
+      else
+	::error ("too many indices for matrix expression");
+      break;
+    }
+}
+
+// Matrix assignments indexed by a single value.
+
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      const tree_constant& i_arg)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  if (user_pref.do_fortran_indexing || nr <= 1 || nc <= 1)
+    {
+      if (i_arg.is_empty ())
+	{
+	  if (! rhs.is_empty ())
+	    {
+	      ::error ("in assignment expression, matrix index is empty but");
+	      ::error ("right hand side is not an empty matrix");
+	    }
+// XXX FIXME XXX -- to really be correct here, we should probably
+// check to see if the assignment conforms, but that seems like more
+// work than it's worth right now...
+
+// The assignment functions can't handle empty matrices, so don't let
+// any pass through here.
+	  return;
+	}
+
+// We can't handle the case of assigning to a vector first, since even
+// then, the two operations are not equivalent.  For example, the
+// expression V(:) = M is handled differently depending on whether the
+// user specified do_fortran_indexing = "true".
+
+      if (user_pref.do_fortran_indexing)
+	fortran_style_matrix_assignment (rhs, i_arg);
+      else if (nr <= 1 || nc <= 1)
+	vector_assignment (rhs, i_arg);
+      else
+	panic_impossible ();
+    }
+  else
+    ::error ("single index only valid for row or column vector");
+}
+
+// Fortran-style assignments.  Matrices are assumed to be stored in
+// column-major order and it is ok to use a single index for
+// multi-dimensional matrices.
+
+void
+TC_REP::fortran_style_matrix_assignment (const tree_constant& rhs,
+					 const tree_constant& i_arg)
+{
+  tree_constant tmp_i = i_arg.make_numeric_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	double dval = tmp_i.double_value ();
+
+	if (xisnan (dval))
+	  {
+	    error ("NaN is invalid as a matrix index");
+	    return;
+	  }
+
+	int i = NINT (dval);
+	int idx = i - 1;
+
+	if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    int len = nr * nc;
+
+	    if (idx < len && len > 0)
+	      {
+		convert_to_row_or_column_vector ();
+
+		nr = rows ();
+		nc = columns ();
+
+		if (nr == 1)
+		  delete_column (idx);
+		else if (nc == 1)
+		  delete_row (idx);
+		else
+		  panic_impossible ();
+	      }
+	    else if (idx < 0)
+	      {
+		error ("invalid index = %d", idx+1);
+	      }
+
+	    return;
+	  }
+
+	if (index_check (idx, "") < 0)
+	  return;
+
+	if (nr <= 1 || nc <= 1)
+	  {
+	    maybe_resize (idx);
+	    if (error_state)
+	      return;
+	  }
+	else if (range_max_check (idx, nr * nc) < 0)
+	  return;
+
+	nr = rows ();
+	nc = columns ();
+
+	if (! indexed_assign_conforms (1, 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("for A(int) = X: X must be a scalar");
+	    return;
+	  }
+	int ii = fortran_row (i, nr) - 1;
+	int jj = fortran_column (i, nr) - 1;
+	do_matrix_assignment (rhs, ii, jj);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	int len = nr * nc;
+	idx_vector ii (mi, 1, "", len);  // Always do fortran indexing here...
+	if (! ii)
+	  return;
+
+	if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    ii.sort_uniq ();
+	    int num_to_delete = 0;
+	    for (int i = 0; i < ii.length (); i++)
+	      {
+		if (ii.elem (i) < len)
+		  num_to_delete++;
+		else
+		  break;
+	      }
+
+	    if (num_to_delete > 0)
+	      {
+		if (num_to_delete != ii.length ())
+		  ii.shorten (num_to_delete);
+
+		convert_to_row_or_column_vector ();
+
+		nr = rows ();
+		nc = columns ();
+
+		if (nr == 1)
+		  delete_columns (ii);
+		else if (nc == 1)
+		  delete_rows (ii);
+		else
+		  panic_impossible ();
+	      }
+	    return;
+	  }
+
+	if (nr <= 1 || nc <= 1)
+	  {
+	    maybe_resize (ii.max ());
+	    if (error_state)
+	      return;
+	  }
+	else if (range_max_check (ii.max (), len) < 0)
+	  return;
+
+	int ilen = ii.capacity ();
+
+	if (ilen != rhs_nr * rhs_nc)
+	  {
+	    ::error ("A(matrix) = X: X and matrix must have the same number");
+	    ::error ("of elements");
+	  }
+	else if (ilen == 1 && rhs.is_scalar_type ())
+	  {
+	    int nr = rows ();
+	    int idx = ii.elem (0);
+	    int ii = fortran_row (idx + 1, nr) - 1;
+	    int jj = fortran_column (idx + 1, nr) - 1;
+
+	    if (rhs.const_type () == scalar_constant)
+	      matrix->elem (ii, jj) = rhs.double_value ();
+	    else if (rhs.const_type () == complex_scalar_constant)
+	      complex_matrix->elem (ii, jj) = rhs.complex_value ();
+	    else
+	      panic_impossible ();
+	  }
+	else
+	  fortran_style_matrix_assignment (rhs, ii);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      gripe_range_invalid ();
+      break;
+
+    case magic_colon:
+// a(:) = [] is equivalent to a(:,:) = [].
+      if (rhs_nr == 0 && rhs_nc == 0)
+	do_matrix_assignment (rhs, magic_colon, magic_colon);
+      else
+	fortran_style_matrix_assignment (rhs, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Fortran-style assignment for vector index.
+
+void
+TC_REP::fortran_style_matrix_assignment (const tree_constant& rhs,
+					 idx_vector& i)
+{
+  assert (rhs.is_matrix_type ());
+
+  int ilen = i.capacity ();
+
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  int len = rhs_nr * rhs_nc;
+
+  if (len == ilen)
+    {
+      int nr = rows ();
+      if (rhs.const_type () == matrix_constant)
+	{
+	  double *cop_out = rhs_m.fortran_vec ();
+	  for (int k = 0; k < len; k++)
+	    {
+	      int ii = fortran_row (i.elem (k) + 1, nr) - 1;
+	      int jj = fortran_column (i.elem (k) + 1, nr) - 1;
+
+	      matrix->elem (ii, jj) = *cop_out++;
+	    }
+	}
+      else
+	{
+	  Complex *cop_out = rhs_cm.fortran_vec ();
+	  for (int k = 0; k < len; k++)
+	    {
+	      int ii = fortran_row (i.elem (k) + 1, nr) - 1;
+	      int jj = fortran_column (i.elem (k) + 1, nr) - 1;
+
+	      complex_matrix->elem (ii, jj) = *cop_out++;
+	    }
+	}
+    }
+  else
+    ::error ("number of rows and columns must match for indexed assignment");
+}
+
+// Fortran-style assignment for colon index.
+
+void
+TC_REP::fortran_style_matrix_assignment (const tree_constant& rhs,
+					 TC_REP::constant_type mci)
+{
+  assert (rhs.is_matrix_type () && mci == TC_REP::magic_colon);
+
+  int nr = rows ();
+  int nc = columns ();
+
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  int rhs_size = rhs_nr * rhs_nc;
+  if (rhs_size == 0)
+    {
+      if (rhs.const_type () == matrix_constant)
+	{
+	  delete matrix;
+	  matrix = new Matrix (0, 0);
+	  return;
+	}
+      else
+	panic_impossible ();
+    }
+  else if (nr*nc != rhs_size)
+    {
+      ::error ("A(:) = X: X and A must have the same number of elements");
+      return;
+    }
+
+  if (rhs.const_type () == matrix_constant)
+    {
+      double *cop_out = rhs_m.fortran_vec ();
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  matrix->elem (i, j) = *cop_out++;
+    }
+  else
+    {
+      Complex *cop_out = rhs_cm.fortran_vec ();
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  complex_matrix->elem (i, j) = *cop_out++;
+    }
+}
+
+// Assignments to vectors.  Hand off to other functions once we know
+// what kind of index we have.  For a colon, it is the same as
+// assignment to a matrix indexed by two colons.
+
+void
+TC_REP::vector_assignment (const tree_constant& rhs,
+			   const tree_constant& i_arg)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  assert ((nr <= 1 || nc <= 1) && ! user_pref.do_fortran_indexing);
+
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int i = tree_to_mat_idx (tmp_i.double_value ());
+	if (index_check (i, "") < 0)
+	  return;
+	do_vector_assign (rhs, i);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	int len = nr * nc;
+	idx_vector iv (mi, user_pref.do_fortran_indexing, "", len);
+	if (! iv)
+	  return;
+
+	do_vector_assign (rhs, iv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range ri = tmp_i.range_value ();
+	int len = nr * nc;
+	if (len == 2 && is_zero_one (ri))
+	  {
+	    do_vector_assign (rhs, 1);
+	  }
+	else if (len == 2 && is_one_zero (ri))
+	  {
+	    do_vector_assign (rhs, 0);
+	  }
+	else
+	  {
+	    if (index_check (ri, "") < 0)
+	      return;
+	    do_vector_assign (rhs, ri);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int rhs_nr = rhs.rows ();
+	int rhs_nc = rhs.columns ();
+
+	if (! indexed_assign_conforms (nr, nc, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(:) = X: X and A must have the same dimensions");
+	    return;
+	  }
+	do_matrix_assignment (rhs, magic_colon, magic_colon);
+      }
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Check whether an indexed assignment to a vector is valid.
+
+void
+TC_REP::check_vector_assign (int rhs_nr, int rhs_nc, int ilen, const char *rm)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  if ((nr == 1 && nc == 1) || nr == 0 || nc == 0)  // No orientation.
+    {
+      if (! (ilen == rhs_nr || ilen == rhs_nc))
+	{
+	  ::error ("A(%s) = X: X and %s must have the same number of elements",
+		 rm, rm);
+	}
+    }
+  else if (nr == 1)  // Preserve current row orientation.
+    {
+      if (! (rhs_nr == 1 && rhs_nc == ilen))
+	{
+	  ::error ("A(%s) = X: where A is a row vector, X must also be a", rm);
+	  ::error ("row vector with the same number of elements as %s", rm);
+	}
+    }
+  else if (nc == 1)  // Preserve current column orientation.
+    {
+      if (! (rhs_nc == 1 && rhs_nr == ilen))
+	{
+	  ::error ("A(%s) = X: where A is a column vector, X must also be", rm);
+	  ::error ("a column vector with the same number of elements as %s", rm);
+	}
+    }
+  else
+    panic_impossible ();
+}
+
+// Assignment to a vector with an integer index.
+
+void
+TC_REP::do_vector_assign (const tree_constant& rhs, int i)
+{
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  if (indexed_assign_conforms (1, 1, rhs_nr, rhs_nc))
+    {
+      maybe_resize (i);
+      if (error_state)
+	return;
+
+      int nr = rows ();
+      int nc = columns ();
+
+      if (nr == 1)
+	{
+	  REP_ELEM_ASSIGN (0, i, rhs.double_value (), rhs.complex_value (),
+			   rhs.is_real_type ());
+	}
+      else if (nc == 1)
+	{
+	  REP_ELEM_ASSIGN (i, 0, rhs.double_value (), rhs.complex_value (),
+			   rhs.is_real_type ());
+	}
+      else
+	panic_impossible ();
+    }
+  else if (rhs_nr == 0 && rhs_nc == 0)
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      int len = MAX (nr, nc);
+
+      if (i < 0 || i >= len || (nr == 0 && nc == 0))
+	{
+	  ::error ("A(int) = []: index out of range");
+	  return;
+	}
+
+      if (nr == 0 && nc > 0)
+	resize (0, nc - 1);
+      else if (nc == 0 && nr > 0)
+	resize (nr - 1, 0);
+      else if (nr == 1)
+	delete_column (i);
+      else if (nc == 1)
+	delete_row (i);
+      else
+	panic_impossible ();
+    }
+  else
+    {
+      ::error ("for A(int) = X: X must be a scalar");
+      return;
+    }
+}
+
+// Assignment to a vector with a vector index.
+
+void
+TC_REP::do_vector_assign (const tree_constant& rhs, idx_vector& iv)
+{
+  if (rhs.is_zero_by_zero ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      int len = MAX (nr, nc);
+
+      if (iv.max () >= len)
+	{
+	  ::error ("A(matrix) = []: index out of range");
+	  return;
+	}
+
+      if (nr == 1)
+	delete_columns (iv);
+      else if (nc == 1)
+	delete_rows (iv);
+      else
+	panic_impossible ();
+    }
+  else if (rhs.is_scalar_type ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      if (iv.capacity () == 1)
+	{
+	  int idx = iv.elem (0);
+
+	  if (nr == 1)
+	    {
+	      REP_ELEM_ASSIGN (0, idx, rhs.double_value (),
+			       rhs.complex_value (), rhs.is_real_type ());
+	    }
+	  else if (nc == 1)
+	    {
+	      REP_ELEM_ASSIGN (idx, 0, rhs.double_value (),
+			       rhs.complex_value (), rhs.is_real_type ());
+	    }
+	  else
+	    panic_impossible ();
+	}
+      else
+	{
+	  if (nr == 1)
+	    {
+	      ::error ("A(matrix) = X: where A is a row vector, X must also be a");
+	      ::error ("row vector with the same number of elements as matrix");
+	    }
+	  else if (nc == 1)
+	    {
+	      ::error ("A(matrix) = X: where A is a column vector, X must also be a");
+	      ::error ("column vector with the same number of elements as matrix");
+	    }
+	  else
+	    panic_impossible ();
+	}
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int ilen = iv.capacity ();
+      check_vector_assign (rhs_nr, rhs_nc, ilen, "matrix");
+      if (error_state)
+	return;
+
+      force_orient f_orient = no_orient;
+      if (rhs_nr == 1 && rhs_nc != 1)
+	f_orient = row_orient;
+      else if (rhs_nc == 1 && rhs_nr != 1)
+	f_orient = column_orient;
+
+      maybe_resize (iv.max (), f_orient);
+      if (error_state)
+	return;
+
+      int nr = rows ();
+      int nc = columns ();
+
+      if (nr == 1 && rhs_nr == 1)
+	{
+	  for (int i = 0; i < iv.capacity (); i++)
+	    REP_ELEM_ASSIGN (0, iv.elem (i), rhs_m.elem (0, i),
+			     rhs_cm.elem (0, i), rhs.is_real_type ());
+	}
+      else if (nc == 1 && rhs_nc == 1)
+	{
+	  for (int i = 0; i < iv.capacity (); i++)
+	    REP_ELEM_ASSIGN (iv.elem (i), 0, rhs_m.elem (i, 0),
+			     rhs_cm.elem (i, 0), rhs.is_real_type ());
+	}
+      else
+	::error ("A(vector) = X: X must be the same size as vector");
+    }
+  else
+    panic_impossible ();
+}
+
+// Assignment to a vector with a range index.
+
+void
+TC_REP::do_vector_assign (const tree_constant& rhs, Range& ri)
+{
+  if (rhs.is_zero_by_zero ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      int len = MAX (nr, nc);
+
+      int b = tree_to_mat_idx (ri.min ());
+      int l = tree_to_mat_idx (ri.max ());
+      if (b < 0 || l >= len)
+	{
+	  ::error ("A(range) = []: index out of range");
+	  return;
+	}
+
+      if (nr == 1)
+	delete_columns (ri);
+      else if (nc == 1)
+	delete_rows (ri);
+      else
+	panic_impossible ();
+    }
+  else if (rhs.is_scalar_type ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      if (nr == 1)
+	{
+	  ::error ("A(range) = X: where A is a row vector, X must also be a");
+	  ::error ("row vector with the same number of elements as range");
+	}
+      else if (nc == 1)
+	{
+	  ::error ("A(range) = X: where A is a column vector, X must also be a");
+	  ::error ("column vector with the same number of elements as range");
+	}
+      else
+	panic_impossible ();
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int ilen = ri.nelem ();
+      check_vector_assign (rhs_nr, rhs_nc, ilen, "range");
+      if (error_state)
+	return;
+
+      force_orient f_orient = no_orient;
+      if (rhs_nr == 1 && rhs_nc != 1)
+	f_orient = row_orient;
+      else if (rhs_nc == 1 && rhs_nr != 1)
+	f_orient = column_orient;
+
+      maybe_resize (tree_to_mat_idx (ri.max ()), f_orient);
+      if (error_state)
+	return;
+
+      int nr = rows ();
+      int nc = columns ();
+
+      double b = ri.base ();
+      double increment = ri.inc ();
+
+      if (nr == 1)
+	{
+	  for (int i = 0; i < ri.nelem (); i++)
+	    {
+	      double tmp = b + i * increment;
+	      int col = tree_to_mat_idx (tmp);
+	      REP_ELEM_ASSIGN (0, col, rhs_m.elem (0, i), rhs_cm.elem (0, i),
+			       rhs.is_real_type ());
+	    }
+	}
+      else if (nc == 1)
+	{
+	  for (int i = 0; i < ri.nelem (); i++)
+	    {
+	      double tmp = b + i * increment;
+	      int row = tree_to_mat_idx (tmp);
+	      REP_ELEM_ASSIGN (row, 0, rhs_m.elem (i, 0), rhs_cm.elem (i, 0),
+			       rhs.is_real_type ());
+	    }
+	}
+      else
+	panic_impossible ();
+    }
+  else
+    panic_impossible ();
+}
+
+// Matrix assignment indexed by two values.  This function determines
+// the type of the first arugment, checks as much as possible, and
+// then calls one of a set of functions to handle the specific cases:
+//
+//   M (integer, arg2) = RHS  (MA1)
+//   M (vector,  arg2) = RHS  (MA2)
+//   M (range,   arg2) = RHS  (MA3)
+//   M (colon,   arg2) = RHS  (MA4)
+//
+// Each of those functions determines the type of the second argument
+// and calls another function to handle the real work of doing the
+// assignment.
+
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      const tree_constant& i_arg,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int i = tree_to_mat_idx (tmp_i.double_value ());
+	do_matrix_assignment (rhs, i, j_arg);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	idx_vector iv (mi, user_pref.do_fortran_indexing, "row", rows ());
+	if (! iv)
+	  return;
+
+	do_matrix_assignment (rhs, iv, j_arg);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range ri = tmp_i.range_value ();
+	int nr = rows ();
+	if (nr == 2 && is_zero_one (ri))
+	  {
+	    do_matrix_assignment (rhs, 1, j_arg);
+	  }
+	else if (nr == 2 && is_one_zero (ri))
+	  {
+	    do_matrix_assignment (rhs, 0, j_arg);
+	  }
+	else
+	  {
+	    if (index_check (ri, "row") < 0)
+	      return;
+	    do_matrix_assignment (rhs, ri, j_arg);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      do_matrix_assignment (rhs, magic_colon, j_arg);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA1 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return;
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return;
+	if (! indexed_assign_conforms (1, 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(int,int) = X, X must be a scalar");
+	    return;
+	  }
+	maybe_resize (i, j);
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, i, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return;
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	if (! indexed_assign_conforms (1, jv.capacity (), rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(int,matrix) = X: X must be a row vector with the same");
+	    ::error ("number of elements as matrix");
+	    return;
+	  }
+	maybe_resize (i, jv.max ());
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, i, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return;
+	Range rj = tmp_j.range_value ();
+	if (! indexed_assign_conforms (1, rj.nelem (), rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(int,range) = X: X must be a row vector with the same");
+	    ::error ("number of elements as range");
+	    return;
+	  }
+
+	int nc = columns ();
+	if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, i, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, i, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return;
+	    maybe_resize (i, tree_to_mat_idx (rj.max ()));
+	    if (error_state)
+	      return;
+
+	    do_matrix_assignment (rhs, i, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int nc = columns ();
+	int nr = rows ();
+	if (i == -1 && nr == 1 && rhs_nr == 0 && rhs_nc == 0
+	    || index_check (i, "row") < 0)
+	  return;
+	else if (nc == 0 && nr == 0 && rhs_nr == 1)
+	  {
+	    if (rhs.is_complex_type ())
+	      {
+		complex_matrix = new ComplexMatrix ();
+		type_tag = complex_matrix_constant;
+	      }
+	    else
+	      {
+		matrix = new Matrix ();
+		type_tag = matrix_constant;
+	      }
+	    maybe_resize (i, rhs_nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (indexed_assign_conforms (1, nc, rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (i, nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (i < 0 || i >= nr)
+	      {
+		::error ("A(int,:) = []: row index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(int,:) = X: X must be a row vector with the same");
+	    ::error ("number of columns as A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, i, magic_colon);
+      }
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA2 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return;
+	if (! indexed_assign_conforms (iv.capacity (), 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(matrix,int) = X: X must be a column vector with the");
+	    ::error ("same number of elements as matrix");
+	    return;
+	  }
+	maybe_resize (iv.max (), j);
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, iv, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	if (! indexed_assign_conforms (iv.capacity (), jv.capacity (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(r_mat,c_mat) = X: the number of rows in X must match");
+	    ::error ("the number of elements in r_mat and the number of");
+	    ::error ("columns in X must match the number of elements in c_mat");
+	    return;
+	  }
+	maybe_resize (iv.max (), jv.max ());
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, iv, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (! indexed_assign_conforms (iv.capacity (), rj.nelem (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(matrix,range) = X: the number of rows in X must match");
+	    ::error ("the number of elements in matrix and the number of");
+	    ::error ("columns in X must match the number of elements in range");
+	    return;
+	  }
+
+	int nc = columns ();
+	if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, iv, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, iv, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return;
+	    maybe_resize (iv.max (), tree_to_mat_idx (rj.max ()));
+	    if (error_state)
+	      return;
+
+	    do_matrix_assignment (rhs, iv, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int nc = columns ();
+	int new_nc = nc;
+	if (nc == 0)
+	  new_nc = rhs_nc;
+
+	if (indexed_assign_conforms (iv.capacity (), new_nc,
+				     rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (iv.max (), new_nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (iv.max () >= rows ())
+	      {
+		::error ("A(matrix,:) = []: row index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(matrix,:) = X: the number of rows in X must match the");
+	    ::error ("number of elements in matrix, and the number of columns");
+	    ::error ("in X must match the number of columns in A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, iv, magic_colon);
+      }
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA3 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, Range& ri,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return;
+	if (! indexed_assign_conforms (ri.nelem (), 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(range,int) = X: X must be a column vector with the");
+	    ::error ("same number of elements as range");
+	    return;
+	  }
+	maybe_resize (tree_to_mat_idx (ri.max ()), j);
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, ri, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	if (! indexed_assign_conforms (ri.nelem (), jv.capacity (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(range,matrix) = X: the number of rows in X must match");
+	    ::error ("the number of elements in range and the number of");
+	    ::error ("columns in X must match the number of elements in matrix");
+	    return;
+	  }
+	maybe_resize (tree_to_mat_idx (ri.max ()), jv.max ());
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, ri, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (! indexed_assign_conforms (ri.nelem (), rj.nelem (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(r_range,c_range) = X: the number of rows in X must");
+	    ::error ("match the number of elements in r_range and the number");
+	    ::error ("of columns in X must match the number of elements in");
+	    ::error ("c_range");
+	    return;
+	  }
+
+	int nc = columns ();
+	if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, ri, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, ri, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return;
+
+	    maybe_resize (tree_to_mat_idx (ri.max ()),
+			  tree_to_mat_idx (rj.max ()));
+
+	    if (error_state)
+	      return;
+
+	    do_matrix_assignment (rhs, ri, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int nc = columns ();
+	int new_nc = nc;
+	if (nc == 0)
+	  new_nc = rhs_nc;
+
+	if (indexed_assign_conforms (ri.nelem (), new_nc, rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (tree_to_mat_idx (ri.max ()), new_nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    int b = tree_to_mat_idx (ri.min ());
+	    int l = tree_to_mat_idx (ri.max ());
+	    if (b < 0 || l >= rows ())
+	      {
+		::error ("A(range,:) = []: row index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(range,:) = X: the number of rows in X must match the");
+	    ::error ("number of elements in range, and the number of columns");
+	    ::error ("in X must match the number of columns in A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, ri, magic_colon);
+      }
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA4 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type i,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  if (error_state)
+    return;
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	int nr = rows ();
+	int nc = columns ();
+	if (j == -1 && nc == 1 && rhs_nr == 0 && rhs_nc == 0
+	    || index_check (j, "column") < 0)
+	  return;
+	if (nr == 0 && nc == 0 && rhs_nc == 1)
+	  {
+	    if (rhs.is_complex_type ())
+	      {
+		complex_matrix = new ComplexMatrix ();
+		type_tag = complex_matrix_constant;
+	      }
+	    else
+	      {
+		matrix = new Matrix ();
+		type_tag = matrix_constant;
+	      }
+	    maybe_resize (rhs_nr-1, j);
+	    if (error_state)
+	      return;
+	  }
+	else if (indexed_assign_conforms (nr, 1, rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (nr-1, j);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (j < 0 || j >= nc)
+	      {
+		::error ("A(:,int) = []: column index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(:,int) = X: X must be a column vector with the same");
+	    ::error ("number of rows as A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, magic_colon, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	int nr = rows ();
+	int new_nr = nr;
+	if (nr == 0)
+	  new_nr = rhs_nr;
+
+	if (indexed_assign_conforms (new_nr, jv.capacity (),
+				     rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (new_nr-1, jv.max ());
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (jv.max () >= columns ())
+	      {
+		::error ("A(:,matrix) = []: column index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(:,matrix) = X: the number of rows in X must match the");
+	    ::error ("number of rows in A, and the number of columns in X must");
+	    ::error ("match the number of elements in matrix");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, magic_colon, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	int nr = rows ();
+	int new_nr = nr;
+	if (nr == 0)
+	  new_nr = rhs_nr;
+
+	if (indexed_assign_conforms (new_nr, rj.nelem (), rhs_nr, rhs_nc))
+	  {
+	    int nc = columns ();
+	    if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	      {
+		do_matrix_assignment (rhs, magic_colon, 1);
+	      }
+	    else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	      {
+		do_matrix_assignment (rhs, magic_colon, 0);
+	      }
+	    else
+	      {
+		if (index_check (rj, "column") < 0)
+		  return;
+		maybe_resize (new_nr-1, tree_to_mat_idx (rj.max ()));
+		if (error_state)
+		  return;
+	      }
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    int b = tree_to_mat_idx (rj.min ());
+	    int l = tree_to_mat_idx (rj.max ());
+	    if (b < 0 || l >= columns ())
+	      {
+		::error ("A(:,range) = []: column index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(:,range) = X: the number of rows in X must match the");
+	    ::error ("number of rows in A, and the number of columns in X");
+	    ::error ("must match the number of elements in range");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, magic_colon, rj);
+      }
+      break;
+
+    case magic_colon:
+// a(:,:) = foo is equivalent to a = foo.
+      do_matrix_assignment (rhs, magic_colon, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Functions that actually handle assignment to a matrix using two
+// index values.
+//
+//                   idx2
+//            +---+---+----+----+
+//   idx1     | i | v |  r | c  |
+//   ---------+---+---+----+----+
+//   integer  | 1 | 5 |  9 | 13 |
+//   ---------+---+---+----+----+
+//   vector   | 2 | 6 | 10 | 14 |
+//   ---------+---+---+----+----+
+//   range    | 3 | 7 | 11 | 15 |
+//   ---------+---+---+----+----+
+//   colon    | 4 | 8 | 12 | 16 |
+//   ---------+---+---+----+----+
+
+/* 1 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i, int j)
+{
+  REP_ELEM_ASSIGN (i, j, rhs.double_value (), rhs.complex_value (),
+		   rhs.is_real_type ());
+}
+
+/* 2 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i, idx_vector& jv)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int j = 0; j < jv.capacity (); j++)
+    REP_ELEM_ASSIGN (i, jv.elem (j), rhs_m.elem (0, j),
+		     rhs_cm.elem (0, j), rhs.is_real_type ());
+}
+
+/* 3 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i, Range& rj)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+
+  for (int j = 0; j < rj.nelem (); j++)
+    {
+      double tmp = b + j * increment;
+      int col = tree_to_mat_idx (tmp);
+      REP_ELEM_ASSIGN (i, col, rhs_m.elem (0, j), rhs_cm.elem (0, j),
+		       rhs.is_real_type ());
+    }
+}
+
+/* 4 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i,
+			      TC_REP::constant_type mcj)
+{
+  assert (mcj == magic_colon);
+
+  int nc = columns ();
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_row (i);
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      for (int j = 0; j < nc; j++)
+	REP_ELEM_ASSIGN (i, j, rhs_m.elem (0, j), rhs_cm.elem (0, j),
+			 rhs.is_real_type ());
+    }
+  else if (rhs.is_scalar_type () && nc == 1)
+    {
+      REP_ELEM_ASSIGN (i, 0, rhs.double_value (),
+		       rhs.complex_value (), rhs.is_real_type ());
+    }
+  else
+    panic_impossible ();
+}
+
+/* 5 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, int j)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int i = 0; i < iv.capacity (); i++)
+    {
+      int row = iv.elem (i);
+      REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, 0),
+		       rhs_cm.elem (i, 0), rhs.is_real_type ());
+    }
+}
+
+/* 6 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, idx_vector& jv)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int i = 0; i < iv.capacity (); i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < jv.capacity (); j++)
+	{
+	  int col = jv.elem (j);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem (i, j),
+			   rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 7 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, Range& rj)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+
+  for (int i = 0; i < iv.capacity (); i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < rj.nelem (); j++)
+	{
+	  double tmp = b + j * increment;
+	  int col = tree_to_mat_idx (tmp);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem (i, j),
+			   rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 8 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, TC_REP::constant_type mcj)
+{
+  assert (mcj == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_rows (iv);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int nc = columns ();
+
+      for (int j = 0; j < nc; j++)
+	{
+	  for (int i = 0; i < iv.capacity (); i++)
+	    {
+	      int row = iv.elem (i);
+	      REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, j),
+			       rhs_cm.elem (i, j), rhs.is_real_type ());
+	    }
+	}
+    }
+}
+
+/* 9 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, Range& ri, int j)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+
+  for (int i = 0; i < ri.nelem (); i++)
+    {
+      double tmp = b + i * increment;
+      int row = tree_to_mat_idx (tmp);
+      REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, 0),
+		       rhs_cm.elem (i, 0), rhs.is_real_type ());
+    }
+}
+
+/* 10 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      Range& ri, idx_vector& jv)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+
+  for (int j = 0; j < jv.capacity (); j++)
+    {
+      int col = jv.elem (j);
+      for (int i = 0; i < ri.nelem (); i++)
+	{
+	  double tmp = b + i * increment;
+	  int row = tree_to_mat_idx (tmp);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem (i, j),
+			   rhs_m.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 11 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      Range& ri, Range& rj)
+{
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int i = 0; i < ri.nelem (); i++)
+    {
+      double itmp = ib + i * iinc;
+      int row = tree_to_mat_idx (itmp);
+      for (int j = 0; j < rj.nelem (); j++)
+	{
+	  double jtmp = jb + j * jinc;
+	  int col = tree_to_mat_idx (jtmp);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem  (i, j),
+			   rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 12 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      Range& ri, TC_REP::constant_type mcj)
+{
+  assert (mcj == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_rows (ri);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      double ib = ri.base ();
+      double iinc = ri.inc ();
+
+      int nc = columns ();
+
+      for (int i = 0; i < ri.nelem (); i++)
+	{
+	  double itmp = ib + i * iinc;
+	  int row = tree_to_mat_idx (itmp);
+	  for (int j = 0; j < nc; j++)
+	    REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, j),
+			     rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 13 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci, int j)
+{
+  assert (mci == magic_colon);
+
+  int nr = rows ();
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_column (j);
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      for (int i = 0; i < nr; i++)
+	REP_ELEM_ASSIGN (i, j, rhs_m.elem (i, 0),
+			 rhs_cm.elem (i, 0), rhs.is_real_type ());
+    }
+  else if (rhs.is_scalar_type () && nr == 1)
+    {
+      REP_ELEM_ASSIGN (0, j, rhs.double_value (),
+		       rhs.complex_value (), rhs.is_real_type ());
+    }
+  else
+    panic_impossible ();
+}
+
+/* 14 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci, idx_vector& jv)
+{
+  assert (mci == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_columns (jv);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int nr = rows ();
+
+      for (int i = 0; i < nr; i++)
+	{
+	  for (int j = 0; j < jv.capacity (); j++)
+	    {
+	      int col = jv.elem (j);
+	      REP_ELEM_ASSIGN (i, col, rhs_m.elem (i, j),
+			       rhs_cm.elem (i, j), rhs.is_real_type ());
+	    }
+	}
+    }
+}
+
+/* 15 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci, Range& rj)
+{
+  assert (mci == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_columns (rj);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int nr = rows ();
+
+      double jb = rj.base ();
+      double jinc = rj.inc ();
+
+      for (int j = 0; j < rj.nelem (); j++)
+	{
+	  double jtmp = jb + j * jinc;
+	  int col = tree_to_mat_idx (jtmp);
+	  for (int i = 0; i < nr; i++)
+	    {
+	      REP_ELEM_ASSIGN (i, col, rhs_m.elem (i, j),
+			       rhs_cm.elem (i, j), rhs.is_real_type ());
+	    }
+	}
+    }
+}
+
+/* 16 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci,
+			      TC_REP::constant_type mcj)
+{
+  assert (mci == magic_colon && mcj == magic_colon);
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      break;
+
+    case matrix_constant:
+      delete matrix;
+      break;
+
+    case complex_scalar_constant:
+      delete complex_scalar;
+      break;
+
+    case complex_matrix_constant:
+      delete complex_matrix;
+      break;
+
+    case string_constant:
+      delete [] string;
+      break;
+
+    case range_constant:
+      delete range;
+      break;
+
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  type_tag = rhs.const_type ();
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      scalar = rhs.double_value ();
+      break;
+
+    case matrix_constant:
+      matrix = new Matrix (rhs.matrix_value ());
+      break;
+
+    case string_constant:
+      string = strsave (rhs.string_value ());
+      break;
+
+    case complex_matrix_constant:
+      complex_matrix = new ComplexMatrix (rhs.complex_matrix_value ());
+      break;
+
+    case complex_scalar_constant:
+      complex_scalar = new Complex (rhs.complex_value ());
+      break;
+
+    case range_constant:
+      range = new Range (rhs.range_value ());
+      break;
+
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Functions for deleting rows or columns of a matrix.  These are used
+// to handle statements like
+//
+//   M (i, j) = []
+
+void
+TC_REP::delete_row (int idx)
+{
+  if (type_tag == matrix_constant)
+    {
+      int nr = matrix->rows ();
+      int nc = matrix->columns ();
+      Matrix *new_matrix = new Matrix (nr-1, nc);
+      int ii = 0;
+      for (int i = 0; i < nr; i++)
+	{
+	  if (i != idx)
+	    {
+	      for (int j = 0; j < nc; j++)
+		new_matrix->elem (ii, j) = matrix->elem (i, j);
+	      ii++;
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      int nr = complex_matrix->rows ();
+      int nc = complex_matrix->columns ();
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr-1, nc);
+      int ii = 0;
+      for (int i = 0; i < nr; i++)
+	{
+	  if (i != idx)
+	    {
+	      for (int j = 0; j < nc; j++)
+		new_matrix->elem (ii, j) = complex_matrix->elem (i, j);
+	      ii++;
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_rows (idx_vector& iv)
+{
+  iv.sort_uniq ();
+  int num_to_delete = iv.length ();
+
+  if (num_to_delete == 0)
+    return;
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all rows of a column vector, make result 0x0.
+  if (nc == 1 && num_to_delete == nr)
+    nc = 0;
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      if (i == iv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      if (i == iv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = complex_matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_rows (Range& ri)
+{
+  ri.sort ();
+  int num_to_delete = ri.nelem ();
+
+  if (num_to_delete == 0)
+    return;
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all rows of a column vector, make result 0x0.
+  if (nc == 1 && num_to_delete == nr)
+    nc = 0;
+
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+
+  int max_idx = tree_to_mat_idx (ri.max ());
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      double itmp = ib + idx * iinc;
+	      int row = tree_to_mat_idx (itmp);
+
+	      if (i == row && row <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      double itmp = ib + idx * iinc;
+	      int row = tree_to_mat_idx (itmp);
+
+	      if (i == row && row <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = complex_matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_column (int idx)
+{
+  if (type_tag == matrix_constant)
+    {
+      int nr = matrix->rows ();
+      int nc = matrix->columns ();
+      Matrix *new_matrix = new Matrix (nr, nc-1);
+      int jj = 0;
+      for (int j = 0; j < nc; j++)
+	{
+	  if (j != idx)
+	    {
+	      for (int i = 0; i < nr; i++)
+		new_matrix->elem (i, jj) = matrix->elem (i, j);
+	      jj++;
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      int nr = complex_matrix->rows ();
+      int nc = complex_matrix->columns ();
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr, nc-1);
+      int jj = 0;
+      for (int j = 0; j < nc; j++)
+	{
+	  if (j != idx)
+	    {
+	      for (int i = 0; i < nr; i++)
+		new_matrix->elem (i, jj) = complex_matrix->elem (i, j);
+	      jj++;
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_columns (idx_vector& jv)
+{
+  jv.sort_uniq ();
+  int num_to_delete = jv.length ();
+
+  if (num_to_delete == 0)
+    return;
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all columns of a row vector, make result 0x0.
+  if (nr == 1 && num_to_delete == nc)
+    nr = 0;
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      if (j == jv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      if (j == jv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = complex_matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_columns (Range& rj)
+{
+  rj.sort ();
+  int num_to_delete = rj.nelem ();
+
+  if (num_to_delete == 0)
+    return;
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all columns of a row vector, make result 0x0.
+  if (nr == 1 && num_to_delete == nc)
+    nr = 0;
+
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  int max_idx = tree_to_mat_idx (rj.max ());
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      double jtmp = jb + idx * jinc;
+	      int col = tree_to_mat_idx (jtmp);
+
+	      if (j == col && col <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      double jtmp = jb + idx * jinc;
+	      int col = tree_to_mat_idx (jtmp);
+
+	      if (j == col && col <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = complex_matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
 /*
 ;;; Local Variables: ***
 ;;; mode: C++ ***