changeset 25228:581d3a13d7e2

ishermitian.m, issymmetric.m: Use @tcode macro in docstring (bug #53556). * ishermitian.m, issymmetric.m: Use @tcode macro in docstring for code sequences that end with a transpose operator.
author Rik <rik@octave.org>
date Thu, 12 Apr 2018 09:10:33 -0700
parents a937ffe7dfd9
children 920adb4051a3
files scripts/linear-algebra/ishermitian.m scripts/linear-algebra/issymmetric.m
diffstat 2 files changed, 4 insertions(+), 4 deletions(-) [+]
line wrap: on
line diff
--- a/scripts/linear-algebra/ishermitian.m	Thu Apr 12 12:02:25 2018 -0400
+++ b/scripts/linear-algebra/ishermitian.m	Thu Apr 12 09:10:33 2018 -0700
@@ -32,13 +32,13 @@
 ## skew-Hermitian.
 ##
 ## Background: A matrix is Hermitian if the complex conjugate transpose of the
-## matrix is equal to the original matrix: @w{@code{@var{A} == @var{A}'}}.  If
+## matrix is equal to the original matrix: @w{@tcode{@var{A} == @var{A}'}}.  If
 ## a tolerance is given then the calculation is
 ## @code{norm (@var{A} - @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
 ##
 ## A matrix is skew-hermitian if the complex conjugate transpose of the matrix
 ## is equal to the negative of the original matrix:
-## @w{@code{@var{A} == -@var{A}'}}.  If a
+## @w{@tcode{@var{A} == -@var{A}'}}.  If a
 ## tolerance is given then the calculation is
 ## @code{norm (@var{A} + @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
 ## @seealso{issymmetric, isdefinite}
--- a/scripts/linear-algebra/issymmetric.m	Thu Apr 12 12:02:25 2018 -0400
+++ b/scripts/linear-algebra/issymmetric.m	Thu Apr 12 09:10:33 2018 -0700
@@ -32,12 +32,12 @@
 ## skew-symmetry.
 ##
 ## Background: A matrix is symmetric if the transpose of the matrix is equal
-## to the original matrix: @w{@code{@var{A} == @var{A}.'}}.  If a tolerance
+## to the original matrix: @w{@tcode{@var{A} == @var{A}.'}}.  If a tolerance
 ## is given then symmetry is determined by
 ## @code{norm (@var{A} - @var{A}.', Inf) / norm (@var{A}, Inf) < @var{tol}}.
 ##
 ## A matrix is skew-symmetric if the transpose of the matrix is equal to the
-## negative of the original matrix: @w{@code{@var{A} == -@var{A}.'}}.  If a
+## negative of the original matrix: @w{@tcode{@var{A} == -@var{A}.'}}.  If a
 ## tolerance is given then skew-symmetry is determined by
 ## @code{norm (@var{A} + @var{A}.', Inf) / norm (@var{A}, Inf) < @var{tol}}.
 ## @seealso{ishermitian, isdefinite}